首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
In this paper we have made a numerical study on the control of vortex shedding and drag reduction of a cylinder by attaching thin splitter plates. The wake structure of the cylinder of square cross-section with attached splitter plates is analyzed for a range of Reynolds number, based on the incident stream and height of the cylinder, in the laminar range. The Navier-Stokes equations governing the flow are solved by the control volume method over a staggered grid arrangement. We have used the semi-implicit method for pressure-linked equation(SIMPLE) algorithm for computation. Our results show that the presence of a splitter plate upstream of the cylinder reduces the drag, but it has a small impact on the vortex shedding frequency when the plate length is beyond 1.5 time the height of the cylinder. The presence of a downstream splitter plate dampens the vortex shedding frequency. The entrainment of fluid into the inner side of the separated shear layers is obstructed by the downstream splitter plate. Our results suggest that by attaching in-line splitter plates both upstream and downstream of the cylinder, the vortex shedding can be suppressed, as well as a reduction in drag be obtained. We made a parametric study to determine the optimal length of these splitter plates so as to achieve low drag and low vortex shedding frequency.  相似文献   

2.
Mooring systems play an important role for semi-submersible rigs that drill in deepwater.A detailed analysis was carried out on the mooring of a semi-submersible rig that conducted a trial well drilling at a deepwater location in the South China Sea in 2009.The rig was 30 years old and had a shallow platform with a designed maximum operating water depth of 457 m.Following the mooring analysis,a mooring design was given that requires upgrading of the rig’s original mooring system.The upgrade included several innovations,such as installing eight larger anchors,i.e.replacing the original anchors and inserting an additional 600 m of steel wires with the existing chains.All this was done to enhance the mooring capability of the rig in order for the rig to be held in position to conduct drilling at a water depth of 476 m.The overall duration of the drilling was 50 days and the upgraded mooring system proved to be efficient in achieving the goal of keeping the rig stationary while it was drilling the trial well in the South China Sea.This successful campaign demonstrates that an older semi-submersible rig can take on drilling in deep water after careful design and proper upgrading and modification to the original mooring system.  相似文献   

3.
有限水深中垂直下潜弹性薄板的水波散射(英文)   总被引:1,自引:0,他引:1  
The problem of water wave scattering by a thin vertical elastic plate submerged in uniform finite depth water is investigated here.The boundary condition on the elastic plate is derived from the Bernoulli-Euler equation of motion satisfied by the plate.Using the Green’s function technique,from this boundary condition,the normal velocity of the plate is expressed in terms of the difference between the velocity potentials(unknown)across the plate.The two ends of the plate are either clamped or free.The reflection and transmission coefficients are obtained in terms of the integrals’involving combinations of the unknown velocity potential on the two sides of the plate,which satisfy three simultaneous integral equations and are solved numerically.These coefficients are computed numerically for various values of different parameters and depicted graphically against the wave number in a number of figures.  相似文献   

4.
The present investigation deals with process analysis of oxy-acetylene flame assisted double pass line heating for varying plate thickness. oxy-acetylene flame as the heat source for multi pass line heating to achieve 3-D bending of plates with varying thicknesses was studied. The oxy-acetylene flame was modeled as the moving heat source in the FEM analysis. The transient thermal histories were predicted taking into account the temperature dependent thermo-mechanical properties. A comparative study between single pass and double pass line heating residual deformation was also carried out. The temperature distribution and residual deformations predicted by the numerical model developed in the present work compared fairly well with those of the experimental ones.  相似文献   

5.
This paper addresses the development and testing of a remotely controlled boat platform with an innovative air-ventilated hull. The application of air cavities on the underside of ship hulls is a promising means for reducing hydrodynamic drag and pollutant emissions and increasing marine transportation efficiency. Despite this concept’s potential, design optimization and high-performance operation of novel air-cavity ships remain a challenging problem. Hull construction and sensor instrumentation of the model-scale air-cavity boat is described in the paper. The modular structure of the hull allows for easy modifications, and an electric propulsion unit enables self-propelled operation. The boat is controlled remotely via a radio transmission system. Results of initial tests are reported, including thrust, speed, and airflow rate in several loading conditions. The constructed platform can be used for optimizing air-cavity systems and testing other innovative hull designs. This system can be also developed into a high-performance unmanned boat.  相似文献   

6.
The chain/wire rope/chain combination is a commonchoice for mooring offshore floating platforms. However, data ofthe drag coefficients of chain links are rather limited, resulting inuncertainties with the calculations of the drag force, and hence thedamping of the mooring system. In this paper, the importance of theselection of the drag coefficient is first investigated. Thecomputational fluid dynamics (CFD) method is then used todetermine the drag coefficients of a studless chain under steadyflows. Numerical model validation is first completed by simulatinga smooth circular cylinder under steady flows. In particular, theperformance of different turbulence models is assessed through thecomparisons between the calculations and the experimental results.The large eddy simulation (LES) model is finally selected for thesimulation of steady flows past a chain. The effects of the Reynoldsnumber on the drag coefficient of a stud-less chain is also studied.The results show that the calculated drag coefficients of a stud-lesschain are fairly consistent with the available experimental data.  相似文献   

7.
Ship hull form of the underwater area strongly influences the resistance of the ship.The major factor in ship resistance is skin friction resistance.Bulbous bows,polymer paint,water repellent paint(highly water-repellent wall),air injection,and specific roughness have been used by researchers as an attempt to obtain the resistance reduction and operation efficiency of ships.Micro-bubble injection is a promising technique for lowering frictional resistance.The injected air bubbles are supposed to somehow modify the energy inside the turbulent boundary layer and thereby lower the skin friction.The purpose of this study was to identify the effect of injected micro bubbles on a navy fast patrol boat(FPB) 57 m type model with the following main dimensions:L=2 450 mm,B=400 mm,and T=190 mm.The influence of the location of micro bubble injection and bubble velocity was also investigated.The ship model was pulled by an electric motor whose speed could be varied and adjusted.The ship model resistance was precisely measured by a load cell transducer.Comparison of ship resistance with and without micro-bubble injection was shown on a graph as a function of the drag coefficient and Froude number.It was shown that micro bubble injection behind the mid-ship is the best location to achieve the most effective drag reduction,and the drag reduction caused by the micro-bubbles can reach 6%-9%.  相似文献   

8.
Due to the unique structural mode and material property of a composite sandwich plate, related research such as fragment impact resistance of a composite mast is short of publication and urgent in this field. In this paper, the commonly accepted sandwich core board theory was modified. Damage caused by a fragment attack was simulated onto a sandwich plate model built with solid and shell elements. It was shown that shear failure and vast matrix cracking are the main reasons for outer coat damage, and tension failure and partial matrix cracking are the cause for inner coat damage. Additionally, according to complexities in actual sea battles, different work conditions of missile attacks were set. Ballistic limit values of different fragment sizes were also obtained, which provides references for enhancing the fragment impact resistance of a composite mast.  相似文献   

9.
The most critical issue in the steel catenary riser design is to evaluate the fatigue damage in the touchdown zone accurately. Appropriate modeling of the riser-soil resistance in the touchdown zone can lead to significant cost reduction by optimizing design. This paper presents a plasticity model that can be applied to numerically simulate riser-soil interaction and evaluate dynamic responses and the fatigue damage of a steel catenary riser in the touchdown zone. Utilizing the model, numerous riser-soil elements are attached to the steel catenary riser finite elements, in which each simulates local foundation restraint along the riser touchdown zone. The riser-soil interaction plasticity model accounts for the behavior within an allowable combined loading surface. The model will be represented in this paper, allowing simple numerical implementation. More importantly, it can be incorporated within the structural analysis of a steel catenary riser with the finite element method. The applicability of the model is interpreted theoretically and the results are shown through application to an offshore 8.625″ steel catenary riser example. The fatigue analysis results of the liner elastic riser-soil model are also shown. According to the comparison results of the two models, the fatigue life analysis results of the plasticity framework are reasonable and the horizontal effects of the riser-soil interaction can be included.  相似文献   

10.
The problem of ship hull plate processing surface fairing with constraints based on B-spline is solved in this paper. The algorithm for B-spline curve fairing with constraints is one of the most common methods in plane curve fairing. The algorithm can be applied to global and local curve fairing. It can constrain the perturbation range of the control points and the shape variation of the curve, and get a better fairing result in plane curves. In this paper, a new fairing algorithm with constraints for curves and surfaces in space is presented. Then this method is applied to the experiments of ship hull plate processing surface. Finally numerical results are obtained to show the efficiency of this method.  相似文献   

11.
拖曳锚作为新型的系泊基础,尚存诸多关键技术问题需要深入认识和解决。总结拖曳锚实验研究的基本情况及各类实验方法的优缺点,指出拖曳嵌入技术及定位技术研究、多运动参数及运动轨迹测量、重复性及测试精度提高是实验研究的重点和难点。基于拖曳锚形态设计的演变历程,提出锚板结构组成七大部分的功能特性和优化设计准则,指出良好的嵌入性能及效率、加工性能、稳定性能和承载性能是锚板形态设计力争达到的目标。  相似文献   

12.
王胜洋  李孙伟  李炜 《船舶工程》2020,42(9):149-156
拖曳锚系泊作为目前海洋工程使用最为广泛的系泊方式,因其较低的制造和安装成本使其成为小型浮式平台系泊方式的首选。目前拖曳式系泊设计大多根据以往工程经验进行选择设计,由于经验设计中并没过多的泥面表面及以下锚链安装信息,因此在设计之初很难对系泊材料用量准确计算。不同重量的拖曳锚在同样的嵌深和同样的锚倾角条件下,所能提供的系泊力大不相同。同时,不同重量的拖曳锚的在相同土壤条件下拖曳嵌入轨迹不同,因而最大埋深不同。上述两方面原因导致不同重量的拖曳锚提供的系泊力不一样。因此,需要达到同样的系泊效果,泥线以下反悬链线和卧底链的长度在不同重量锚的系泊系统中是不同的。参照系泊成本各个分项在其生命周期各阶段的占比,材料制造成本与安装成本占据系泊成本的大部分,且安装成本往往正比于材料成本。因此降低系泊锚链的材料成本对整个系泊系统的成本降低起到了巨大的优化作用。通过结合拖曳锚的极限平衡法拖曳轨迹理论方程,以不同重量的拖曳锚在粘性土壤中的不同拖曳距离下提供额定系泊力时所需要的材料重量为系泊成本评价依据,从而得到浮式结构物系泊系统的一种设计优化方法。  相似文献   

13.
Torpedo anchors are an innovative and cost-effective technology in marine foundation engineering; however, there is a lack of systematic and comprehensive studies on the influence of torpedo anchor geometry on its hydrodynamic characteristics, especially the effect of anchor fin configuration on the hydrodynamic characteristics is rarely reported in the existing literature. Therefore, this study investigates the influence of geometric characteristics of both finless and finned torpedo anchors on their terminal velocity, drag coefficient and installation directional stability in water through CFD numerical analysis in a systematical manner. The considered geometric characteristics include the center of gravity position, shape and angle of anchor tip, shaft and fin aspect ratio, fin number, fin thickness, fin shape, fin position and fin area. Based on the obtained numerical results, some practical design recommendations and impact weighting charts of different anchor geometric factors are provided, which enables a quick qualitative and quantitative assessment of torpedo anchors. In addition, a simple weight-based approach for estimation of terminal velocity and drag coefficient of torpedo anchors considering multiple geometric configuration factors is proposed, which may provide some reference and scientific guidance for experimental and engineering design of torpedo anchors.  相似文献   

14.
锚链直径对船舶锚泊能力的影响   总被引:1,自引:0,他引:1  
从减轻船总体负担、采用链径更小的海洋系泊链的设计需求出发,以单个链环为微元对锚链在锚泊状态所形成悬链线方程进行推导,建立锚链在典型锚泊状态下的悬链线方程,并以此为基础完成不同链径锚链在抛锚长度、最大可承受环境力、最大抛锚深度等方面的计算分析。结合计算结果和船舶实际使用情况,对采用不同链径锚链的锚泊能力进行综合分析后认为,虽然链径较粗的锚链的理论锚泊能力较强,但若采用霍尔锚等非大抓力锚,或对锚泊水域面积无明确要求、没有在深水中抛锚的特殊需求等,则可以选用链径相对较细的海洋系泊链代替目前规范中规定的电焊锚链。  相似文献   

15.
Subsea pipelines passing through the shallow area are physically protected against the environmental, accidental, and operational loads by trenching and backfilling. Depending on construction methodology, environmental loads, and seabed soil properties, the stiffness of backfilling material may become largely different from the native ground(softer than native ground in most of the cases). The different stiffness between the backfill and native ground affects the soil failure mechanisms and lateral soil resistance against large pipeline displacements that may happen due to ground movement, landslides, ice gouging, and drag embedment anchors. This important aspect is not considered by current design codes. In this paper, the effect of trench-backfill stiffness difference on lateral pipeline-backfill-trench interaction was investigated by performing centrifuge tests. The soil deformations and failure mechanisms were obtained by particle image velocimetry(PIV) analysis. Three experiments were conducted by using three different backfills including loose sand, slurry, and chunky clay that represent the purchased, natural in-fill, and preexcavated materials, respectively. The study shows that the current design codes underestimate the lateral soil resistance for small to moderate pipe displacements inside the trench and overestimate it for large lateral displacement, where the pipeline is penetrating into the trench wall.  相似文献   

16.
索链组合锚泊线静力分析   总被引:1,自引:0,他引:1  
潘甜  刘家新 《船海工程》2011,40(2):52-55
建立悬链线方程,分析组合锚索链的受力及方程的解法,结合实例运用悬链线方程计算组合锚索链的状态参数,为实际工程中两种成分锚泊线的锚泊系统的初步设计和选型提供依据。  相似文献   

17.
The dynamic characteristics of a tunnel structure used to protect underwater power cables, the so-called A-duct, were determined for anchor collisions to provide a procedure for damage assessment and recommendations. The required physical quantities of five target anchors, including the drag coefficient, were obtained using an element-based finite-volume method and ANSYS-CFX software. The terminal velocities of the anchors were then calculated to maximize the colliding kinetic energy. For collision analysis, four parameters (anchor type, ground condition, collision velocity, and collision point) were considered, and the A-duct was modeled based on the Riedel–Hiermaier–Thoma concrete model using ANSYS-Autodyn software. Our analysis results indicated severe damage (D = 1) for most of the gauge points; the damaged area and level increased with the anchor weight. The results showed that the damage was concentrated in the collision area for stock anchors; however, for stockless anchors, damage was also evident in adjacent areas (i.e., damage propagation) due to the anchor head shape as well as the transfer mechanism provided by its reinforcing nets. Accordingly, the 2-ton stock anchor caused more damage at the gauge points near the collision location than the 2-ton stockless anchor. Second, regardless of the ground conditions and rotation angle of the anchor heads with respect to the vertical axis, the damage levels were almost identical. Fixed boundary conditions and non-rotational angle were sufficient for the model used. Third, the damaged areas became smaller when the anchor collision locations deviated from the reference gauge point (P1), i.e., the center of the A-duct. Finally, a comparison of the field-test results to equivalent numerical collision simulations indicated that the size of the predicted and experimentally observed damaged areas were in agreement within 7%.  相似文献   

18.
范井峰  何秦 《船舶》2014,(1):82-85
某型小水线面双体船采用舷侧出锚,在开放海域内抛锚后,船体随风浪漂移,从而引发锚链与船体外板摩擦。文中利用悬链线方程并结合图示详细分析了此类问题的起因,分析得出最优解决方案,从而有效避免后期类似问题的发生,较好地提高了船舶使用性能。  相似文献   

19.
悬链式系泊缆现被广泛使用于海洋平台的定位中,掌握其力学特性对确保海洋平台的安全有非常重要的意义。使用二维集中质量法建立了单根悬链式系泊缆的力学模型,运动方程通过C#编程语言实现计算并通过算例验证了正确性, 系泊缆动力特性的计算程序采取了动态循环数组存储的方法,节省了存储空间。研究了系缆上端点激励为x轴方向简谐运动时节点19、17、15、13、11和9的运动轨迹以及张力最大值最小值的变化趋势,最后在频域对各节点功率谱进行了分析,并得出一些有意义的结论,为海洋平台的发展以及主动式混合模型试验提供了一定的参考价值。  相似文献   

20.
葛利忠  陆建辉 《船舶》2015,(2):52-56
法向承力锚(VLA)因其安装回收方便、承载能力高、可重复使用等优点,被广泛应用于海洋工程。文中假设一楔形锚板埋置于理想不排水饱和软粘土中,通过建立锚板-土体有限元数值模型,对锚板的极限承载力和锚的失效形式进行分析,考察了不同埋深、埋置倾角等对其承载力系数的影响。在浅埋和深埋两种情况下,锚的失效形式分别表现为锚板上方土体的整体破坏和周边土体的局部剪切破坏。随着埋深增加,锚板承载力系数趋于稳定,埋置倾角对承载力系数的影响也逐渐变小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号