首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a model for determining the maximum number of cars by zones in view of the capacity of the road network and the number of parking spaces available. In other words, the proposed model is to examine whether existing road network and parking supply is capable of accommodating future zonal car ownership growth (or the reserve capacity in each zone); i.e. the potential maximum zonal car ownership growth that generates the road traffic within the network capacity and parking space constraints. In the proposed model, the vehicular trip production and attraction are dependent on the car ownership, available parking spaces and the accessibility measures by traffic zones. The model is formulated as a bi-level programming problem. The lower-level problem is an equilibrium trip distribution/assignment problem, while the upper-level problem is to maximize the sum of zonal car ownership by considering travellers’ route and destination choice behaviour and satisfying the network capacity and parking space constraints. A sensitivity analysis based heuristic algorithm is developed to solve the proposed bi-level car ownership problem and is illustrated with a numerical example.  相似文献   

2.
Abstract

Given stochastic features of the demands on both the major road and the minor road at an at-grade un-signalized intersection, the capacity of the minor road is viewed as the vulnerable and critical part impacting on the overall capacity of the intersection. To facilitate the analysis of intersection performance reliability, the capacity reliability of the minor road is defined as the probability that the capacity of the minor road can accommodate a certain traffic demand at a certain degree of saturation. The headway distribution of traffic stream on major road is reflected by three types of distributions, namely, exponential distribution, shifted exponential distribution, and Cowan's M3 distribution. Based on field observations, the volumes on both major roads and minor roads are treated as correlated normal random variables. This paper presents the methods for modeling capacity reliability of the minor road at an at-grade un-signalized priority intersection. A method based on first-order reliability method is used to model the capacity reliability index. As important associated factors of capacity reliability analysis, the methods for modeling and analyzing capacity sensitivity of the minor road and reserve capacity of the priority intersection are also presented. A procedure for evaluating the intersection potential performance using capacity reliability, sensitivity and reserve capacity is developed and demonstrated with a numerical example. Finally, some new findings from the case studies are summarized.  相似文献   

3.
Compared with most optimization methods for capacity evaluation, integrating capacity analysis with timetabling can reveal the types of train line plans and operating rules that have a positive influence on improving capacity utilization as well as yielding more accurate analyses. For most capacity analyses and cyclic timetabling methods, the cycle time is a constant (e.g., one or two hours). In this paper, we propose a minimum cycle time calculation (MCTC) model based on the periodic event scheduling problem (PESP) for a given train line plan, which is promising for macroscopic train timetabling and capacity analysis. In accordance with train operating rules, a non-collision constraint and a series of flexible overtaking constraints (FOCs) are constructed based on variations of the original binary variables in the PESP. Because of the complexity of the PESP, an iterative approximation (IA) method for integration with the CPLEX solver is proposed. Finally, two hypothetical cases are considered to analyze railway capacity, and several influencing factors are studied, including train regularity, train speed, line plan specifications (train stops), overtaking and train heterogeneity. The MCTC model and IA method are used to test a real-world case involving the timetable of the Beijing–Shanghai high-speed railway in China.  相似文献   

4.
The concept of reverse capacity of a whole junction has been used extensively in the design of signal-controlled junctions. This concept, however, has not been applied to priority junctions and roundabouts, probably because of the complicated demand and supply relationship. When the demands on the approaches to the junction increase, the capacities of those non-priority approaches reduce at different rates. This makes the calculation of reserve capacity of the whole junction not a straightforward task. Using the definition of reserve capacity of a whole junction in Allsop (1972; Transpn Res. 6, 245–255), explicit formulae for the estimation of reserve capacities of priority junctions and roundabouts are derived in this paper. Numerical examples are given to illustrate the usefulness of these formulae.  相似文献   

5.
Modeling capacity flexibility of transportation networks   总被引:1,自引:0,他引:1  
Flexibility of the transportation system is one of the important performance measures needed to deal with demand changes. In this paper, we provide a quantitative assessment of capacity flexibility for the passenger transportation network using bi-level network capacity models. Two approaches for assessing the value of capacity flexibility are proposed. One approach is based on the concept of reserve capacity, which reflects the flexibility with respect to changes in terms of demand volume only. The second approach allows for variations in the demand pattern in addition to changes in demand volume in order to more fully capture demand changes. Two models are developed in the second approach to consider two types of capacity flexibility. The total capacity flexibility allows all users to have both route choice and destination choice when estimating capacity flexibility. The limited capacity flexibility estimates how much more demand volume could be added to a fixed demand pattern by allowing the additional demand to deviate from the fixed demand pattern. Numerical examples are provided to demonstrate the different concepts of capacity flexibility for a passenger transportation system under demand changes.  相似文献   

6.
Two apparent features that prevail at signalized intersections in China are green signal countdown device and long cycle lengths. The objective of this study is to investigate the impacts of green signal countdown device and long cycle length on queue discharge patterns and to discuss its implications on capacity estimation in the context of China's traffic. At five typical large intersections in Shanghai and Tianjin, 11 through lanes were observed, and 9251 saturation headways were obtained as valid samples. Statistical analyses indicate that the discharge process of queuing vehicles can be divided into three distinct stages according to the discharge flow rate: a start‐up stage, a steady stage, and a rush stage. The average time for queuing vehicles to reach a stationary saturation flow rate, that is, the start‐up stage, was found to be approximately 20–30 seconds; the rush stage usually occurs during the phase transition period. The finding is contrary to the conventional assumption that the discharge rate reaches a maximum value after the fourth vehicle is discharged and then remains constant during the green time until the queue is completely dissolved. The capacity estimation errors that might arise from the conventional methods are discussed through a comparative study and a sensitivity analysis that are based on the identified queue discharge patterns. In addition, a piecewise linear regression method was proposed in order to reduce such errors. The proposed method can be used for capacity estimation at signalized intersections with the identified queue discharge patterns. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
In response to increasing demand, airlines may increase capacity by increasing the frequency of flights or they may choose to increase aircraft size. This may yield operating cost economies. If the airports they operate from are capacity constrained, they will be limited in the extent that they can change frequency which will limit their ability to compete with the number of frequencies offered. This article focuses on this trade-off and pays particular attention to the practices of a specific airline. Conclusions are offered on the impact of inter alia competition, changes in aircraft technology, 9/11 and the impact of slot constraints. It appears that changes in size are more important than frequency, which is consistent with the presence of slot constraints and there is a significant impact of competition. As the concentration of carriers increases, so aircraft size falls. 9/11 also has a significant impact on traffic whereas the introduction of the Boeing 777, as an illustration of a change in technology, does not.  相似文献   

8.
The fare of a transit line is one of the important decision variables for transit network design. It has been advocated as an efficient means of coordinating the transit passenger flows and of alleviating congestion in the transit network. This paper shows how transit fare can be optimized so as to balance the passenger flow on the transit network and to reduce the overload delays of passengers at transit stops. A bi‐level programming method is developed to optimize the transit fare under line capacity constraints. The upper‐level problem seeks to minimize the total network travel time, while the lower‐level problem is a stochastic user equilibrium transit assignment model with line capacity constraints. A heuristic solution algorithm based on sensitivity analysis is proposed. Numerical example is used to illustrate the application of the proposed model and solution algorithm.  相似文献   

9.
In this paper a method for setting traffic signals of individual signalized junctions is presented. Capacity factor maximization and cycle time minimization are considered as objective functions. The correspondence between cycle time and capacity factor is discussed. The influence of minimum green and maximum red constraints is analyzed. Once this correspondence is known, an efficient problem-oriented algorithm, based on a PERT-like technique, is proposed for the solution of the problem.  相似文献   

10.
Timetable design is crucial to the metro service reliability. A straightforward and commonly adopted strategy in daily operation is a peak/off-peak-based schedule. However, such a strategy may fail to meet dynamic temporal passenger demand, resulting in long passenger waiting time at platforms and over-crowding in trains. Thanks to the emergence of smart card-based automated fare collection systems, we can now better quantify spatial–temporal demand on a microscopic level. In this paper, we formulate three optimization models to design demand-sensitive timetables by demonstrating train operation using equivalent time (interval). The first model aims at making the timetable more dynamic; the second model is an extension allowing for capacity constraints. The third model aims at designing a capacitated demand-sensitive peak/off-peak timetable. We assessed the performance of these three models and conducted sensitivity analyzes on different parameters on a metro line in Singapore, finding that dynamical timetable built with capacity constraints is most advantageous. Finally, we conclude our study and discuss the implications of the three models: the capacitated model provides a timetable which shows best performance under fixed capacity constraints, while the uncapacitated model may offer optimal temporal train configuration. Although we imposed capacity constraints when designing the optimal peak/off-peak timetable, its performance is not as good as models with dynamical headways. However, it shows advantages such as being easier to operate and more understandable to the passengers.  相似文献   

11.
Much interest has recently been shown in the combination of the distribution and assignment models. In this paper we adopt a generalized Benders' decomposition to solve this combined problem for a system optimized assignment with linear link costs and explicit capacity constraints on link flows. The master problem which is generated is used to show that the combined problem can be viewed as a modified distribution problem, of gravity form, with a minimax instead of a linear objective function. An algorithm for solving the master problem is discussed, and some computational results presented.  相似文献   

12.
In this paper, we attempt to motivate the importance of uncertain demand and varying risk preferences in understanding the behavior of transportation firms. Using specific functional forms, a numerical investigation of this issue is carried out for the case of airlines. The major finding is that changes in risk preferences do not significantly affect the choice of fare but do affect the choice of capacity. This finding is shown to be fairly robust as sensitivity tests are performed for some of the key parameters in the model. Finally, the relevance of the analysis in terms of characterizing the airlines' initial response to deregulation is briefly discussed.  相似文献   

13.
Global supply chains are more than ever under threat of major disruptions caused by devastating natural and man-made disasters as well as recurrent interruptions caused by variations in supply and demand. This paper presents a hybrid robust-stochastic optimization model and a Lagrangian relaxation solution method for designing a supply chain resilient to (1) supply/demand interruptions and (2) facility disruptions whose risk of occurrence and magnitude of impact can be mitigated through fortification investments. We study a realistic problem where a disruption can cause either a complete facility shutdown or a reduced supply capacity. The probability of disruption occurrence is expressed as a function of facility fortification investment for hedging against potential disruptions in the presence of certain budgetary constraints. Computational experiments and thorough sensitivity analyses are completed using some of the existing widely-used datasets. The performance of the proposed model is also examined using a Monte Carlo simulation method. To explore the practical application of the proposed model and methodology, a real world case example is discussed which addresses mitigating the risk of facility fires in an actual oil production company. Our analysis and investigation focuses on exploring the extent to which supply chain design decisions are influenced by factors such as facility fortification strategies, a decision maker's conservatism degree, demand fluctuations, supply capacity variations, and budgetary constraints.  相似文献   

14.
The traffic signal settings for a single road junction have been often evaluated by mathematical programming techniques. This paper proposes a new approach to the problem which allows all the regulation variables to be incorporated into a Binary-Mixed-Integer- Linear-Programming model. This general model permits some of the limitative assumptions involved in other formulations of the problem based on the stage matrix to be removed. The model can be easily solved obtaining a fast computation of the globally optimal control system design. A detailed treatment is given for the particular structure of the mathematical programming schemes obtained by considering delay minimization, capacity reserve maximization, or cycle time minimization as the objective.  相似文献   

15.
The objective of the research described in this paper was to develop a model for computation of an ultimate capacity of a single track line and to provide a sensitivity analysis of this capacity to the parameters which influence it. The model is based in a concept of mathematical expectation of capacity and can be applied under saturation conditions i.e. a constant demand for service. It can serve for planning purposes, computation of single track line capacity on the base of which estimations are possible concerning a single track line performance under given conditions, as well as commercial time‐tables planning, decisions about a partial or complete construction of the second parallel track along the line in service, intermediate stations locations planning and the necessary facilities along the line under construction.

In the sensitivity analysis, the model allows a change of parameters upon which the capacity depends. These are: the length of the line segment which is considered to be bottleneck for calculation of capacity, traffic distributions per directions, train mix, train velocities and train spacing rules applied by the dispatching service when regulating the traffic on a line.  相似文献   

16.
A model of traveller behaviour should recognise the exogenous and endogenous factors that limit the choice set of users. These factors impose constraints on the decision maker, which constraints may be considered implicitly, as soft constraints imposing thresholds on the perception of changes in attribute values, or explicitly as hard constraints. The purpose of this paper is twofold: (1) To present a constrained nested logit-type choice model to cope with hard constraints. This model is derived from the entropy-maximizing framework. (2) To describe a general framework to deal with (dynamic) non-linear utilities. This approach is based on Reproducing Kernel Hilbert Spaces. The resulting model allows the dynamic aspect and the constraints on the choice process to be represented simultaneously. A novel estimation procedure is introduced in which the utilities are viewed as the parameters of the proposed model instead of attribute weights as in the classical linear models. A discussion on over-specification of the proposed model is presented. This model is applied to a synthetic test problem and to a railway service choice problem in which users choose a service depending on the timetable, ticket price, travel time and seat availability (which imposes capacity constraints). Results show (1) the relevance of incorporating constraints into the choice models, (2) that the constrained models appear to be a better fit than the counterpart unconstrained choice models; and (3) the viability of the approach, in a real case study of railway services on the Madrid–Seville corridor (Spain).  相似文献   

17.
The management of products’ end-of-life and the recovery of used products has gained significant importance in recent years. In this paper, we address the carbon footprint-based problem that arises in a closed-loop supply chain where returned products are collected from customers. These returned products can either be disposed of or be remanufactured to be resold as new ones. Given this environment, an optimization model for a closed-loop supply chain (CLSC) in which carbon emission is expressed in terms of environmental constraints, i.e., carbon emission constraints, is developed. These constraints aim to limit the carbon emission per unit of product supplied with different transportation modes. Here, we design a closed-loop network where capacity limits, single-item management and uncertainty on product demands and returns are considered. First, fuzzy mathematical programming is introduced for uncertain modeling. Then, the statistical approach to the possibility to synthesize fuzzy information is utilized. Therefore, using a defined possibilistic mean and variance, we transform the proposed fuzzy mathematical model into a crisp form to facilitate efficient computation and analysis. Finally, the risk caused by violating the estimated resource constraints is analyzed so that decision makers (DMs) can trade off between the expected cost savings and the expected risk. We utilize data from a company located in Iran.  相似文献   

18.
The estimation of runway capacity is important in airport planning and operational analysis. Standard procedures for capacity determination typically assume that there is no constraint on aircraft operations and do not provide good estimates when constraints exist. This paper presents a study of runway capacity at Singapore Changi Airport in which local operational constraints are taken into account. In addition, the impacts on capacity due to marine vessel crossings in a shipping channel near the airport, and the timing for implementation of simultaneous, independent instrument approach procedures are also investigated. The levels of annual aviation demand that could be served without excessive delays to aircraft under various operating scenarios are estimated.  相似文献   

19.
Conventional design methods require the lane marking patterns, which are painted on ground showing road users the permissible turning directions on different approach lanes, as exogenous inputs to define the traffic stream grouping for analysis. This predefined grouping of traffic movements may restrict the design of signal timings in the optimisation procedures. More recently, a lane-based design method has been developed to relax the lane markings as binary-type control variables in a mathematical programming approach. The lane marking patterns and the signal timings can then be optimised simultaneously in a unified framework. This paper presents an extension work to further relax the numbers of approach lane in traffic arms as new integer variables which can then be optimised to give optimal lane arrangement in various arms of a junction to manage the given traffic demands more efficiently. All well-defined signal timings variables in the phase-based approach as well as the lane marking and lane flow variables in the lane-based approach together with their governing constraints are all preserved in the new formulation for the reserve capacity optimisation of isolated signal-controlled junctions.  相似文献   

20.
The existing slot allocation mechanism, based on the International Air Transport Association (IATA) system and its complementary version of the European Union (EU) regulation, produces rather poor capacity allocation outcomes for congested EU airports since it fails to properly match slots requested with slots allocated to airlines. Inefficiencies during the initial allocation are mainly due to the problem complexity in conjunction to limited decision support available to slot coordinators. On the other hand, substantial inefficiencies give rise to severe slot misuse and unreasonably low utilisation of airport resources running already into scarcity. The objective of this paper is to develop an optimisation-based model implementing the existing EU/IATA rules, operational constraints, and coordination procedures with the ultimate objective to better accommodate airlines’ preferences at coordinated airports through the minimisation of the difference between the requested and the allocated slot times to airlines. The results of the model are assessed and compared vis-à-vis the allocation outcome produced according to current slot coordination practice in three regional Greek airports. The proposed model produces very promising results and demonstrates that there is large room for improvement of the efficiency of the current allocation outcome in a range between 14% and 95%. The discussion of the model results is complemented by a sensitivity analysis highlighting the importance of declared capacity and the magnitude of its influence on slot allocation efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号