首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
文章在介绍两种主动前轮转向系统工作原理的基础上,从车辆动力学控制的角度,详细总结和分析了各种用于主动前轮转向的控制方法,包括横摆角速度控制、D*控制、侧倾稳定性控制和变转向传动比控制等。并指出在未来的主动前轮转向控制研究中,集成控制将是发展的必然方向。  相似文献   

2.
设计了一种"前馈+反馈"自适应神经网络控制器,通过直接横摆力矩和前轮主动转向的复合控制来提高车辆横向稳定性。反馈控制器采用PD控制策略,以实际横摆角速度与目标横摆角速度的偏差为输入量;前馈控制器采用RBF神经网络,以反馈控制器的输出为误差进行学习,而实现自适应控制。仿真结果表明,采用上述复合控制,能有效跟踪目标横摆角速度并降低质心侧偏角,提高了车辆在高速急转向时的稳定性。  相似文献   

3.
主动前轮转向客车的操纵稳定性仿真分析   总被引:1,自引:0,他引:1  
建立某大型客车的含侧向、横摆及侧倾三自由度动力学模型,通过方向盘角阶跃转向仿真结果和试验数据的比较,验证了仿真分析的准确性。采用横摆角速度跟踪主动前轮转向控制策略,结合比例积分控制方法,在考虑作动器动态特性和前轮转角饱和特性的基础上,对主动前轮转向控制前后的车辆进行直线行驶下的侧向风扰动和湿滑路面急转弯情况下的仿真对比分析。结果表明,主动前轮转向控制后的车辆其操纵稳定性和行车安全性都有较大的提高。  相似文献   

4.
建立主动前轮转向三自由度车辆非线性模型,考虑轮胎侧偏刚度参数的不确定性,提出了最优保性能车辆稳定性控制方案,基于线性矩阵不等式等处理方法,导出二次最优保性能控制律。仿真结果表明,与传统前轮转向和比例微分控制相比,最优保性能控制方案保证了系统质心侧偏角基本保持为零、横摆角速度快速达到稳态值,可提高行驶安全性和操纵稳定性。  相似文献   

5.
在分析车身侧倾对转向系统影响的基础上,对转向系统通常采用的参考模型进行修改,并探讨了轮胎侧偏刚度和车速对参考模型横摆角速度的影响.得出结论为,轮胎侧偏刚度对参考模型的横摆角速度增益有较大影响:前轮侧偏刚度的降低使横摆角速度大致成比例地减小.利用最优前馈和反馈控制方法,提出了四轮转向变增益跟踪控制策略.采用非线性半经验轮胎模型的仿真结果表明,所提出的变增益跟踪控制策略对车辆的操纵稳定性有重大改善.  相似文献   

6.
为了提高线控转向车辆在高速工况下角传动比非线性响应的准确性,分析线控转向的功能指标,推导可变传动比的计算过程,讨论固定横摆角速度增益、固定侧向加速度增益、车速、方向盘输入对前轮转角映射结果的影响,建立基于模糊推理系统的可变传动比策略,针对理想传动比在车辆稳定性控制层面上的不足,采用前轮补偿角的方法进行最终前轮转角的决策。在验证过程中,搭建线控转向整车数学模型,选取典型转向输入工况,结合动力学仿真软件对总体系统设计进行联合仿真对比分析。实验结果分析证明,设计后的传动比策略可以实现方向盘指标需求,降低横摆角速度和质心侧偏角,有效减轻驾驶员的操作负荷,基于改进滑模控制的主动转向策略相比饱和函数指数趋近律滑模控制,超调量降低了9%,提高汽车行驶安全。  相似文献   

7.
为了提高4×4越野车弯道高速行驶的稳定性,计及前轮定位参数的影响,建立了转向行驶时整车4自由度动力学模型;计算了车辆在不同车速下,不同前轮主销后倾角时的横摆角速度瞬态响应.结果表明,车速提高时,横摆角速度超调量增大,稳定时间延长;而在适当范围内增大主销后倾角,可减小横摆角速度超调量和稳定时间,改善高速行驶车辆的转向稳定性.同时说明主销后倾角对横摆角速度超调量有阻尼作用.  相似文献   

8.
为提高轮毂电机驱动电动汽车在高速、低附着等危险工况下的侧向稳定性,提出一种基于Nash博弈的协同控制策略,采用上下双层控制结构进行稳定性控制策略的设计。上层引入Nash博弈协调控制策略决策前轮转角和附加横摆力矩,跟踪期望横摆角速度和质心侧偏角;下层根据轴荷比例分配四个车轮的驱动力矩。并在CarSim/Simulink的联合仿真平台进行危险工况下双移线仿真试验,结果表明,相比于只进行主动前轮转向控制,在潮湿沥青路面以75km/h行驶时,采用基于Nash博弈的协调控制策略横摆角速度最大误差为2.25°,侧向速度最大误差为0.12 m/s,且保持良好的路径跟踪性能;通过适当协调主动前轮转向(AFS)和直接横摆力矩控制(DYC)的动作,文章所提出的控制策略可以有效地提高横向稳定性,保证车辆在危险行驶工况下正常行驶。  相似文献   

9.
以四轮转向汽车为研究对象,建立车辆四轮转向动力学模型。基于后轮主动转向控制方法,分别搭建四轮转向汽车前后轮转角成比例的主动转向控制模型以及基于车速和横摆角速度反馈的主动转向控制模型。在高速转向工况下,采用MATLAB/Simulink建立四轮转向汽车主动转向控制仿真模型进行对比仿真。仿真结果表明,该控制方法能够较好地减小车辆质心侧偏角及横摆角速度,保证车辆良好的轨迹跟踪能力,有效地改善了车辆的操纵稳定性。  相似文献   

10.
为提高汽车在高速、低附着系数路面下的操纵稳定性,论文设计模型预测控制器跟踪线性二自由度理想模型,得到横摆角速度与质心侧偏角偏差,然后由二次规划算法计算实际的四个车轮转角,并在Carsim软件中建立开环角阶跃工况进行联合仿真。结果表明:文章所设计的基于模型预测控制的主动四轮转向汽车相对于前轮转向,能够有效降低整车角阶跃输入下的横摆角速度与质心侧偏角,更好地跟踪理想控制目标,主动四轮转向汽车提高了整车的操纵稳定性和路径跟随精度。  相似文献   

11.
We report a model and controller for an active front-wheel steering (AFS) system. Two integrated dynamics control (IDC) systems are designed to investigate the performance of the AFS system when integrated with braking and steering systems. An 8-degrees-of-freedom vehicle model was employed to test the controllers. The controllers were inspected and compared under different driving and road conditions, with and without braking input, and with and without steering input. The results show that the AFS system performs kinematic steering assistance function and kinematic stabilisation function very well. Three controllers allowed the yaw rate to accurately follow a reference yaw rate, improving the lateral stability. The two IDC systems improved the lateral stability and vehicle control and were effective in reducing the sideslip angle.  相似文献   

12.
An integrated vehicle dynamics control (IVDC) algorithm, developed for improving vehicle handling and stability under critical lateral motions, is discussed in this paper. The IVDC system utilises integral and nonsingular fast terminal sliding mode (NFTSM) control strategies and coordinates active front steering (AFS) and direct yaw moment control (DYC) systems. When the vehicle is in the normal driving situation, the AFS system provides handling enhancement. If the vehicle reaches its handling limit, both AFS and DYC are then integrated to ensure the vehicle stability. The major contribution of this paper is in improving the transient response of the vehicle yaw rate and sideslip angle tracking controllers by implementing advanced types of sliding mode strategies, namely integral terminal sliding mode and NFTSM, in the IVDC system. Simulation results demonstrate that the developed control algorithm for the IVDC system not only has strong robustness against uncertainties but also improves the transient response of the control system.  相似文献   

13.
This paper presents a coordinated control of electronic stability control (ESC) and active front steering (AFS) with adaptive algorithms for yaw moment distribution in integrated chassis control (ICC). In order to distribute a control yaw moment into control tire forcres of ESC and AFS, and to coordinate the relative usage of ESC to AFS, a LMS/Newton algorithm (LMSN) is adopted. To make the control tire forces zero in applying LMS and LMSN, the zero-attracting mechanism is adopted. Simulations on vehicle simulation software, CarSim®, show that the proposed algorithm is effective for yaw moment distribution in integrated chassis control.  相似文献   

14.
There are basically two methods to control yaw moment which is the most efficient way to improve vehicle stability and handling. The first method is indirect yaw moment control, which works based on control of the lateral tire force through steering angle control. It is mainly known as active steering control (ASC). Nowadays, the most practical approach to steering control is active front steering (AFS). The other method is direct yaw moment control (DYC), in which an unequal distribution of longitudinal tire forces (mainly braking forces) produces a compensating external yaw moment. It is well known that the AFS performance is limited in the non-linear vehicle handling region. On the other hand, in spite of a good performance of DYC in both the linear and non-linear vehicle handling regions, continued DYC activation could lead to uncomfortable driving conditions and an increase in the stopping distance in the case of emergency braking. It is recommended that DYC be used only in high-g critical maneuvers. In this paper, an integrated fuzzy/optimal AFS/DYC controller has been designed. The control system includes five individual optimal LQR control strategies; each one, has been designed for a specific driving condition. The strategies can cover low, medium, and high lateral acceleration maneuvers on high-μ or low-μ roads. A fuzzy blending logic also has been utilized to mange each LQR control strategy contribution level in the final control action. The simulation results show the advantages of the proposed control system over the individual AFS or DYC controllers.  相似文献   

15.
针对轮毂电机分布式驱动越野车辆在狭小空间快速机动的需求,设计了一种分层结构的原地转向控制策略。基于动力学原理分析了各轮载荷、附着条件对原地转向横摆速度的影响机理,并搭建原地转向运动学模型,上层采用模型预测控制算法设计原地转向理想轨迹以及期望的横摆角速度,开发基于PI滑模控制的横摆运动跟踪算法,通过补偿转向横摆力矩以提高方向角控制的鲁棒性和稳定性,下层以最优轮胎利用率为目标,设计二次规划算法优化分配各轮附加横摆力矩。dSPACE硬件在环测试结果表明,所提出的控制算法可在保证稳定性的前提下实现原地转向,大幅提高了车辆的转向机动性,在方向盘动态输入仿真中,车辆最大转弯半径为0.157 m,转向中心的最大偏移量为3.610 m;同时,驾驶员能对转向过程进行闭环控制,实现了原地转向过程中横摆速度的实时调节。  相似文献   

16.
基于车辆状态识别的AFS与ESP协调控制研究   总被引:2,自引:0,他引:2  
给出了基于滑模变结构的AFS控制策略和直接横摆力矩加变滑移率联合控制的ESP控制策略。在分析两者控制性能的基础上提出了协调控制的一般原则。阐述了车辆状态识别算法并给出了具体的协调控制策略,最后通过3个典型工况的仿真计算验证了该协调控制策略的有效性。  相似文献   

17.
This paper presents an fault-tolerant yaw moment control for a vehicle with steer-by-wire (SBW) and brake-by-wire (BBW) devices. SBWs and BBWs can give active front steering (AFS) and electronic stability control (ESC) functions, respectively. Due to motor-driven devices, actuator and sensor faults are inherent in SBW and BBW, and can cause a critical damage to a vehicle. Simple direct yaw moment control is adopted to design a vehicle stability controller. To cope with actuator failure, weighted pseudo-inverse based control allocation (WPCA) with variable weights is proposed in yaw moment distribution procedure. Simulations on vehicle simulation software, CarSim®, show the proposed method is effective for fail safety.  相似文献   

18.
In this paper, an advanced control technique that can be implemented in hard emergency situations of vehicles is introduced. This technique suggests integration between Active Front Steering (AFS) and Active Roll Moment Control (ARMC) systems in order to enhance the vehicle controllability. For this purpose, the AFS system applies a robust sliding mode controller (SMC) that is designed to influence the steering input of the driver by adding a correction steering angle for maintaining the vehicle yaw rate under control all the time. The AFS system is then called active-correction steering control. The ARMC system is designed to differentiate the front and rear axles' vertical suspension forces in order to alter the vehicle yaw rate and to eliminate the vehicle roll motion as well. Moreover, the operation of the SMC is based on tracking the behavior of a nonlinear 2-wheel model of 2-DOF used as a reference model. The 2-wheel model incorporates real tire characteristics, which can be inferred by the use of trained neural networks. The results clearly demonstrate the enhanced characteristics of the proposed control technique. The SMC with the assistance of the ARMC provides less correction of the steering angle and accordingly reduces the possibility of occurrence of the saturation phenomenon that is likely to take place in the operation of the SMC systems.  相似文献   

19.
Direct yaw moment control (DYC), which differentially brakes the wheels to produce a yaw moment for the vehicle stability in a steering process, is an important part of electric stability control system. In this field, most control methods utilise the active brake pressure with a feedback controller to adjust the braked wheel. However, the method might lead to a control delay or overshoot because of the lack of a quantitative project relationship between target values from the upper stability controller to the lower pressure controller. Meanwhile, the stability controller usually ignores the implementing ability of the tyre forces, which might be restrained by the combined-slip dynamics of the tyre. Therefore, a novel control algorithm of DYC based on the hierarchical control strategy is brought forward in this paper. As for the upper controller, a correctional linear quadratic regulator, which not only contains feedback control but also contains feed forward control, is introduced to deduce the object of the stability yaw moment in order to guarantee the yaw rate and side-slip angle stability. As for the medium and lower controller, the quantitative relationship between the vehicle stability object and the target tyre forces of controlled wheels is proposed to achieve smooth control performance based on a combined-slip tyre model. The simulations with the hardware-in-the-loop platform validate that the proposed algorithm can improve the stability of the vehicle effectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号