首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
为真实地反应车辆跟驰机理,假设在跟驰状态下,驾驶员倾向于保持最优跟驰间距,在分析最优间距函数的基础上,建立了车辆跟驰模型(optimal distance model, ODM).利用NGSIM数据,对ODM模型和经典Gipps车辆跟驰模型进行参数标定和评价.用仿真方法分析了ODM模型再现宏观交通流现象的能力和加速度特性.研究结果表明:与Gipps模型相比, ODM模型的加速度、速度和距离的仿真精度分别提高了0.36 m/s2、0.99 m/s和0.73 m,并能够再现实际交通流中稳定车流和冲击波等交通现象;在稳定交通流中, ODM模型总是趋向于使车辆间距等于最优跟驰间距,或在其附近小幅度波动.   相似文献   

2.
随着交通拥堵状况日益显著,整体交通安全性下降,交通事故率逐渐增大.基于提高驾驶安全性考虑,细化元胞长度,引入被广泛证明在描述车辆驾驶行为方面具有很高精度的Gipps 安全距离规则,对NaSch模型进行改进,提出一个新的基于安全距离的元胞自动机交通流模型.采用实测数据对模型进行标定和评估,进一步对模型进行数值模拟分析.模型评估结果显示,新建立的模型相对NaSch 模型精度更高.数值模拟结果表明,改进模型能够很好地表现交通流特性,再现实际交通中的自由流、同步流及拥堵流等交通现象.此外,还发现驾驶员对前车最大减速度估计过高时,会导致道路通行能力下降,而驾驶员对自身车辆最大减速度估计过高时,会在一定程度上增大道路的通行能力,但是很可能会造成不安全的驾驶行为,增加了事故率.  相似文献   

3.
为了分析自动驾驶车辆对交通流宏观特性的影响, 以手动驾驶车辆与自动驾驶车辆构成的混合交通流为研究对象, 提出了不同自动驾驶车辆比例下的混合交通流元胞传输模型(CTM); 应用Newell跟驰模型作为手动驾驶车辆跟驰模型, 应用PATH实验室真车测试标定的模型作为自动驾驶车辆跟驰模型; 计算了手动驾驶与自动驾驶车辆跟驰模型在均衡态的车头间距-速度函数关系式, 推导了不同自动驾驶车辆比例下的混合交通流基本图模型, 计算了混合交通流在不同自动驾驶车辆比例下的最大通行能力、最大拥挤密度以及反向波速等特征量, 依据同质交通流CTM理论建立了不同自动驾驶车辆比例下的混合交通流CTM; 选取移动瓶颈问题进行算例分析, 应用混合交通流CTM计算了不同自动驾驶车辆比例下的移动瓶颈影响时间, 应用跟驰模型对移动瓶颈问题进行微观数值仿真, 分析了混合交通流CTM计算结果与跟驰模型微观仿真结果之间的误差, 验证了混合交通流CTM的准确性。研究结果表明: 混合交通流CTM能够有效计算移动瓶颈的影响时间, 在不同自动驾驶车辆比例下, 混合交通流CTM计算结果与跟驰模型微观仿真结果的误差均在52 s以下, 相对误差均小于10%, 表明了混合交通流CTM在实际应用中的准确性; 混合交通流CTM体现了从微观到宏观的研究思路, 基于微观跟驰模型与目前逐步开展的小规模自动驾驶真车试验之间的关联性, 混合交通流CTM能够较真实地反映未来不同自动驾驶车辆比例下单车道混合交通流演化过程, 增加了模型研究的应用价值。   相似文献   

4.
为客观地描述绿灯期间交叉口进口道异质疏解车流的跟驰行为,基于实测数据验证全速差模型发现,其加速度、速度、车间距的仿真结果存在较大误差. 考虑不同车型车辆性能和驾驶员驾驶行为差异,基于4 种跟驰情景,即小客车跟驰小客车(car-car),小客车跟驰公交车(car-bus),公交车跟驰小客车(bus-car),公交车跟驰公交车(bus-bus),建立考虑车流异质性的车辆跟驰模型. 结果表明,改进模型的性能提升明显,较全速差模型,速度和跟驰间距的均方根百分比误差(RMSPE)分别下降了15.29%,22.32%,更符合交叉口进口道异质疏解车流的跟驰行为.  相似文献   

5.
为满足智能车辆的个性化需求,提高智能车辆人-机交互协同的满意度和接受度,构筑双层驾驶人跟驰模型框架,提出自适应驾驶人期望跟车间距和行为习惯的个性化驾驶人跟驰模型。首先,提取个体驾驶人跟驰均衡状态的数据,采用高斯混合和概率密度函数(Gaussian Mixture Model and Probability Density Function, GMM-PDF)建立第 1 层模型,即驾驶人期望跟车距离模型。然后,将期望跟车距离参数引入模型,基于高斯混合-隐马尔可夫方法(Gaussian Mixture Model and Hidden Markov Model, GMM-HMM)学习驾驶习性,建立第2层模型预测加速度,即个性化驾驶人跟驰模型。其次,研究不同高斯分量个数对模型效果的影响,对比双层模型与 Gipps 模型、最优间距模型(Optimal Distance Model, ODM)、单层模型及通用模型的性能。最后,8位被试驾驶人的自然驾驶行为数据验证结果表明:高斯分量数量与模型性能存在一定的正相关性;在最优高斯分量数量下,8位被试驾驶人在训练集上预测误差均值为0.101 m·s-2,在测试 集上为0.123 m·s-2;随机选取其中1位驾驶人的2个跟车片段数据进行模型计算,结果显示,加速度的平均误差绝对值分别为0.087 m·s-2和0.096 m·s-2,预测效果优于Gipps模型、ODM模型、单层 模型及通用模型30%以上,与驾驶人实际跟驰行为的吻合度更高。  相似文献   

6.
基于模糊推理的跟驰安全距离控制算法及实现   总被引:21,自引:0,他引:21  
车辆跟驰是普遍存在的交通现象之一。由于驾驶员在控制车辆过程中具有模糊的、不确定性的行为特征,难以对驾驶员的行为进行精确的数学描述,此外,为保证车辆行驶的安全,有必要对车辆跟驰时如何保持安全距离进行研究。基于此,提出基于模糊推理的车辆跟驰间距控制算法,并对其进行了仿真运算。仿真结果表明,用模糊推理模拟驾驶员的行为是可行的,并且通过模糊推理控制后车的速度,后车能够以安全距离跟随前车安全行驶。  相似文献   

7.
基于智能网联车辆(Connected Autonomous Vehicle, CAV)跟驰特性,本文研究CAV跟驰模型.考虑多前车电子节气门角度反馈,构建CAV跟驰模型,并应用稳定性分析方法,推导所提模型稳定性判别条件.以考虑3辆前导车的CAV跟驰模型为例,设计数值仿真实验,分析不同CAV比例时混合交通流的安全性.模型稳定性分析表明:所提模型相比已有模型(CAV的T-FVD模型及常规车辆FVD模型)具备更优的稳定域,且考虑前车数量越多、多前车反馈权重系数越大,所提模型的稳定性越好;相同取值条件下,距离越远处的前车反馈权重系数对所提模型稳定性的影响越大.数值仿真表明,CAV有利于降低交通流的车辆尾部碰撞安全风险.  相似文献   

8.
为了更好地模拟智能网联车辆(CAV)的跟驰特性, 在纵向控制模型(LCM)的基础上考虑V2V环境下多辆前车速度和加速度的影响, 构建了智能网联环境下的纵向控制模型(C-LCM); 对LCM和C-LCM进行稳定性分析, 比较了2个模型的交通流稳定域, 确定了不同通信距离时C-LCM对交通流稳定域的影响; 设计数值仿真试验对加速和减速的常见交通场景进行模拟, 分析了在V2V通信条件下CAV的跟驰行为特征; 仿真分析了CAV不同通信距离以及不同渗透率影响下的交通流安全水平; 构建了包含不同CAV渗透率的混合交通流基本图模型。研究结果表明: 交通流稳定域随着考虑前车数量的增多而增大, 当只考虑1辆前车时, 前车与本车的间隔越远, 车辆速度系数对C-LCM稳定域的影响越大; C-LCM可以提前对多前车的行为做出反应, 更好地模拟CAV的动力学特征, 在减速情景中速度超调量从0.15减少为0.08, 最大速度延迟时间由7.5 s缩短为4.9 s, 在加速情景中速度超调量从0.07减少为0.04, 最小速度延迟时间由3.5 s缩短为2.6 s; 随着CAV渗透率的提升, 交通流的安全水平不断提升, 当通信范围内有4辆CAV时, 交通流的安全性能达到最高, 其TIT和TET指标的最大减少量分别为57.22%和59.08%;随着CAV渗透率的提升, 道路通行能力从1 281 veh·h-1提升为3 204 veh·h-1。可见, 提出的C-LCM可以刻画不同车辆的跟驰特点, 实现混合交通流建模, 并降低混合交通流的复杂性, 为智能网联车辆对交通流的影响分析提供参考。   相似文献   

9.
汽车协同式自适应巡航控制(CACC)系统成功应用的前提和关键,是要保证道路上的CACC车辆能与一定距离范围内的其他车辆进行互联通信.本文依据元胞自动机的基本思想,将道路离散成均匀一致的格子单元系统,并基于交通流理论和概率论,构建了车—车通信概率与CACC车辆市场占有率、交通流密度(或占有率)、速度、车头时距,以及DSRC有效作用距离之间的数学关系模型.通过大量的数值模拟实验和美国加州I880高速公路交通流数据对模型进行分析测试,表明该模型可分析不同交通流状态下道路上不同CACC车辆市场占有率,DSRC有效作用距离时的车—车通信概率.本文的研究成果对于未来促进CACC车辆的推广应用具有重要意义.  相似文献   

10.
车辆轨迹数据蕴含着丰富的时空交通信息,是交通状态估计的基础数据之一. 为解决现有数据采集环境难以获得全样本车辆轨迹的问题,面向智能网联环境,构建了混合交通流全样本车辆轨迹重构模型. 首先,分析了智能网联环境下混合交通流的车辆构成及其轨迹数据采集环境;然后,提出了基于智能驾驶员跟驰模型的车辆轨迹重构模型,实现了对插入轨迹数量、轨迹位置和速度等参数的估计;最后,设计仿真试验验证了模型在不同交通流密度和智能网联车(connected automated vehicle,CAV)渗透率条件下的适用性. 试验结果表明:CAV和网联人工驾驶车(connected vehicle,CV)的渗透率为8%和20%时,该车辆轨迹重构模型在不同交通流密度下均能重构84%以上的车辆轨迹;重构轨迹准确性随着CAV和CV渗透率的增加而提高;当交通密度为70辆/km,且CAV渗透率仅为4%的情况下,模型也能重构82%的车辆轨迹.   相似文献   

11.
基于交通流灰色关联熵的交通流无序转化研究   总被引:1,自引:0,他引:1  
用Matlab软件编制皮埃莱(Bierley)模型来产生仿真交通流.在一定参数组合情况下,仿真研究了交通流车队中前后车辆的车头间距变化过程.通过分析这种车头间距的变化曲线,可以明显地观察到交通流无序运动和有序运动之间的转化过程;提出了交通流灰色关联熵模型,并通过该模型对交通流无序转化过程作了分析.结果表明:交通流无序转化过程中存在交通流混沌现象,但其转化过程并不等同于交通流混沌运动的转化过程;交通流从无序运动转化为有序运动的必要条件是从外界获得负熵——信息熵.  相似文献   

12.
在交通流基本参数模型中,密度参数难以直接获取,占有率-流量模型具有较强的实用价值。提出占有率分析单元概念,分析混合交通不同跟车组合下,大型车辆混入对分析单元中占有率参数的影响机理,综合分析单元出现概率,得出在占有率-流量模型中,原始占有率难以反映出大型车辆对交通流影响效应的结论,随后基于车头时距和大车率修正原始占有率,最终建立了机动车混合交通情况下的占有率-流量模型,并用北京快速路实测数据对模型进行了检验,证明占有率修正之后,占有率-流量模型更加精确。此模型等式两边都考虑了大型车辆的影响效应,具有更好的实际物理意义。  相似文献   

13.
一种虚拟交通环境中的微观交通仿真模型   总被引:1,自引:0,他引:1  
为提高虚拟交通环境中车辆行为仿真的逼真度及解决用户与系统的实时交互问题,提出了一种微观交通模型.该模型由道路模型和车辆行为模型构成:道路模型包括了车道的交通属性、几何形状、路网拓扑关系等数据;车辆行为模型考虑驾驶员的交通性格、车辆性能等因素,包括自由行驶、跟驰及换道模型.车辆行为模型可检测与用户所驾驶的汽车仿真器的位置关系,并作出减速、换道、停车等响应.建立了包含153个车道的虚拟交通环境,对模型进行测试,结果表明:所建立的微观交通仿真模型能够反映仿真车辆的个体行为差异;路网中仿真车辆为600辆时,仿真周期约2~4 ms,能实现实时仿真及与用户的实时交互.   相似文献   

14.
交通流稳定性分析是研究交通拥堵形成机理、车队队列控制的基础,面向智能网联环境下的混合交通流队列线性稳定性分析已成为近年来的研究热点. 根据受到的扰动大小和范围,介绍了线性稳定性、非线性稳定性、局部稳定性和队列稳定性的相关概念,并指出了交通流队列稳定性的基本判别准则. 基于控制理论,回顾了交通流车队队列线性稳定性条件的经典解析方法,其中,特征方程法评估了交通流内部扰动的增长速度,传递函数法依托于拉普拉斯变换构建了扰动的传递关系. 从经典跟驰模型、考虑时延的跟驰模型和考虑多前车驾驶信息反馈的跟驰模型出发,系统分析并总结了国内外学者对于混合交通流稳定性问题的研究现状,同时回顾了交通流稳定性理论研究在车队队列控制等方面的实验和工程应用. 最后,展望了混合交通流稳定性分析领域的研究前景,指出了在后车跟驰行为、智能网联汽车的交互协同、复杂混合交通流等几个方面是今后需要重点研究的领域.   相似文献   

15.
与前方车辆距离是影响行车安全的重要因素,因此本文提出一种面向未来智能交通的前方车辆单目视觉测距方法.首先,提出融合物联网、智能识别、云计算技术的车联网模型,车辆可实时向车联网回传位置信息及前车图像,请求附近交通标志及前方车辆几何尺度信息,车辆端可计算图像坐标系下车道标志线、交通标志、车辆尺度信息.然后,建立单目相机数学模型,介绍以交通标志、车道分界线为合作标志的单目视觉测距方法.最后,综合应用单目视觉测距方法,设计了前方车辆自适应视觉测距方案.通过仿真实验,证明了单目视觉测距方法的正确性与有效性,可丰富驾驶辅助系统的前方车辆测距手段.  相似文献   

16.
为利用智能车路协同系统内实时交互信息有效提升交通系统的安全性,提出了基于交通业务特征的交通信息可信甄别方法;重点构建了基于支持向量机(SVM)-长短时记忆(LSTM)神经网络的车辆跟驰行为识别与信息可信甄别模型,包括基于SVM的车辆跟驰行为识别模型和基于LSTM神经网络的车辆跟驰速度预测模型;设定了表征车辆行驶状态的特征向量,基于SVM的车辆跟驰行为识别模型将车辆行驶状态分为跟驰与非跟驰;对于跟驰车辆,基于LSTM神经网络的车辆跟驰速度预测模型根据其历史数据进行速度预测;SVM-LSTM信息可信甄别模型通过检验跟驰车辆的预测速度与其实际速度的差是否在合理范围来判断车辆数据的可信性,实现信息的可信甄别;采用公开数据集对提出的模型进行了训练与测试,并构建了不同异常类型和异常幅度的多个异常测试数据集,对基于SVM-LSTM神经网络的车辆跟驰行为识别与信息可信甄别模型进行了验证。研究结果表明:基于SVM的车辆跟驰行为识别模型对车辆行驶行为识别的准确率达到了99%,基于LSTM神经网络的车辆跟驰速度预测模型的跟驰速度预测精度达到了cm·s-1数量级;基于SVM-LSTM神经网络的车辆跟驰行为识别与信息可信甄别模型在正常数据测试集与多个异常数据测试集上的甄别正确率达到了97%。由此可见,提出的方法可用于路侧设备(RSUs)对车载单元(OBUs)实时信息和车载单元间实时信息的可信甄别。   相似文献   

17.
驾驶员在跟车行驶过程中,通常会通过视野前后车辆的行驶状态来调整自己的跟驰行为,基于此本文提出了一种考虑驾驶员视野内双前车和后车对跟驰车辆影响的改进跟驰模型.根据线性稳定分析方法,得到了改进模型的中性稳定性条件,并通过计算机仿真模拟进行了验证.为了进一步加强验证结果及说明改进模型的优越性,同经典FVD模型进行了数值仿真对比.仿真结果表明:灵敏度α越大越有利于提高改进跟驰系统的稳定性;同经典FVD跟驰模型相比,改进模型抵抗干扰的能力更突出,能够消散交通系统中的微小扰动,具有抑制交通拥堵和稳定交通流的有利作用.  相似文献   

18.
传统换道模型中,把前后临界空隙作为参数固定数值,忽视了车辆和车道间的动态交互作用等因素.从分子动力学角度,系统考虑跟驰需求安全特性,从动态的需求安全距离角度研究车辆在“跟驰—换道—跟驰”过程中的行驶状态转换.确保在换道完成时,换道车辆和目标车道后车能以需求安全距离进行跟车行驶,建立了模拟分子动力学的期望安全间距模型,并对模型进行了仿真分析.结果表明,分子动力学特性模型可以把跟驰行为和换道行为很好地结合起来.研究成果为分析车辆运行交互特性,车辆可变限速技术,自适应巡航控制技术等提供理论依据和技术支撑.  相似文献   

19.
传统换道模型中,把前后临界空隙作为参数固定数值,忽视了车辆和车道间的动态交互作用等因素.从分子动力学角度,系统考虑跟驰需求安全特性,从动态的需求安全距离角度研究车辆在“跟驰-换道-跟驰”过程中的行驶状态转换.确保在换道完成时,换道车辆和目标车道后车能以需求安全距离进行跟车行驶,建立了模拟分子动力学的期望安全间距模型,并对模型进行了仿真分析.结果表明,分子动力学特性模型可以把跟驰行为和换道行为很好地结合起来.研究成果为分析车辆运行交互特性,车辆可变限速技术,自适应巡航控制技术等提供理论依据和技术支撑.  相似文献   

20.
为了更好地模拟城市信号交叉口集聚车辆的跟驰行为,进而应用于城市信号交叉口信号配时和交通流理论研究,采用一种基于视频的交通流数据采集方法来采集信号交叉口的微观交通行为数据.运用灰色关联分析方法对采集到的微观交通数据进行分析,挖掘出其中的有用信息,从而寻求能够最大程度反映信号交叉口集聚车辆跟驰行为的影响变量.构建城市信号交叉口车辆集聚过程中的跟驰模型并进行参数标定、效果验证和比较分析.研究表明,新提出的跟驰模型能够很好地拟合信号交叉口集聚车辆的跟驰行为实测数据,其拟合性和稳定性优于重新标定后的扩展GM模型.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号