首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
建立了双向双车道环境下单车超越车队模型, 分析了影响双向双车道超车危险区域范围的主要因素; 设计了分步式单车超越车队算法, 研究了安全间隙前后车速度、超车车辆入队速度与车队安全间隙范围四者之间的关系, 提出了车辆入队所需最小安全间隙的速度匹配方案; 建立了单车超越车队算法的目标函数, 设定最大允许超车时间内超车车辆与车队行驶距离最大, 超车车辆超越车队车辆数最多, 前、后车形成安全间隙过程中加速度、减速度最小; 提出了基于改进粒子群的分级约束多目标优化方法, 为单车超越车队算法中的三级车速引导提供了优化的速度引导方案。研究结果表明: 双向双车道环境下超车危险区域范围与车队车辆数及对向车辆行驶速度成正相关关系; 改进的粒子群优化算法相比传统算法具有更强的鲁棒性和更快的收敛速度, 平均收敛时间缩短39.2%;在分步式单车超越车队过程中, 车队车辆平均速度提升9.04%, 即在车队间隙生成过程中, 虽然部分车辆速度减小, 但车队整体平均速度得到提升; 超车车辆平均速度提升16.8%, 即在超车过程中, 不仅超车车辆的安全性得到保证, 其运行效率也得到提升。   相似文献   

2.
考虑协作式巡航控制(Cooperative Adaptive Cruise Control,CACC)车辆与自适应巡航控制 (Adaptive Cruise Control,ACC)车辆之间的退化机制,构建由CACC车辆、ACC车辆以及人工驾驶 车辆组成的混合车队。应用传递函数理论,推导混合车队在不同规模情况下的队列稳定性判别 准则,计算混合车队在多种情形下的队列稳定性情况,并设计数值仿真实验验证理论分析结果。 稳定性分析结果表明,所推导的混合车队队列稳定性准则能够从理论层面计算混合车队关于车 队规模与车流速度的队列稳定域,当混合车队中CACC车辆比例达到25.00%~41.17%及以上时, 混合车队可在全速度范围内实现队列稳定。数值仿真结果表明,混合车队头车产生的速度扰动 传递至上游CACC车辆时,CACC车辆可有效抑制速度扰动的波动幅度,使混合车队趋于稳定,验 证了理论分析的正确性。研究结果揭示了混合车队保持稳定时的CACC车辆与人工驾驶车辆的 比例结构。  相似文献   

3.
基于横向控制器和纵向控制器模型,包括校正的预瞄驾驶员模型、加速度控制模型、节气门控制模型和制动器控制模型,建立Matlab/Simulink 和CarSim 车辆联合仿真平台,并对其可行性进行分析与验证.利用平台分别仿真协同自适应巡航控制(Cooperative Adaptive Cruise Control, CACC)车队车辆紧急刹车,通信延时,起步加、减速工况和车队前方插入换道车辆4 种情况下CACC车辆的行驶状况.仿真发现:紧急刹车时车队能够实现较好的紧急避撞;在通信延时的情况下,车队仍能保证行车安全;车队起步、减速工况运行较平稳,但加速度并不平稳,不利于车队后方车辆的乘坐舒适性;车队对前方插入不同速度的车辆能够及时响应并最终恢复安全行车间距.  相似文献   

4.
基于横向控制器和纵向控制器模型,包括校正的预瞄驾驶员模型、加速度控制模型、节气门控制模型和制动器控制模型,建立Matlab/Simulink 和CarSim 车辆联合仿真平台,并对其可行性进行分析与验证.利用平台分别仿真协同自适应巡航控制(Cooperative Adaptive Cruise Control, CACC)车队车辆紧急刹车,通信延时,起步加、减速工况和车队前方插入换道车辆4 种情况下CACC车辆的行驶状况.仿真发现:紧急刹车时车队能够实现较好的紧急避撞;在通信延时的情况下,车队仍能保证行车安全;车队起步、减速工况运行较平稳,但加速度并不平稳,不利于车队后方车辆的乘坐舒适性;车队对前方插入不同速度的车辆能够及时响应并最终恢复安全行车间距.  相似文献   

5.
针对电动汽车存在充电续航问题与传统燃油汽车存在环境污染问题的矛盾,本文提出共 享汽车混合车队规模优化方法。首先,在不考虑成本条件下,分析动态车辆调度和实时调度员分 配对共享汽车系统需求满足和车辆利用的影响。然后,针对由传统内燃汽车、混合动力汽车、插 入式混合动力汽车和纯电动汽车构成的混合共享汽车系统,考虑车辆调度和调度员分配,以运营 商利润最大化为目标,CO2排放量和道路拥堵为约束,构建混合车队规模优化模型。通过Matlab 调用Gurobi求解器求解上述混合整数线性规划模型。最后,以成都市为例,分析不同CO2排放量 约束,以及车辆调度对共享汽车运营商利润、不同类型的车队规模、车辆利用率和用户需求满足 率的影响。同时,比较单一车队和混合车队共享汽车系统,结果显示,混合车队和单一插入式混 合动力车队可以实现经济效益和环境效益的双赢,是目前最适合共享汽车系统发展的模式。  相似文献   

6.
鉴于油耗与节约能源和车辆尾气排放直接相关,探究自动驾驶车辆对油耗的影响. 以手动驾驶车队与自动驾驶车队为数值仿真对象,在交通震荡环境下设计数值仿真实验. 对车队的车辆数量,车队初始速度,以及自动驾驶车辆的车间通信延时做参数敏感性分析. 基于机动车比功率的油耗评价模型,对仿真结果进行统计;相比于手动驾驶车队,计算自动驾驶车队平均油耗率的降低. 从交通流稳定性角度考察油耗降低与稳定性状态转变之间的内在关联性. 研究结果表明,自动驾驶车辆对油耗的降低幅度与车队初始速度有关,与交通流稳定性之间存在定性的影响关系,交通流的平稳性有利于显著改善车辆油耗降低的幅度. 研究结果可为大规模自动驾驶背景下的油耗控制策略提供理论参考.  相似文献   

7.
混合运输需求的车队车辆路线规划模型及算法   总被引:5,自引:1,他引:5  
研究在物流中心车队投递货物到客户,且有货物回投物流中心、每一客户可被访问2次的车队路线规划问题.建立了车队车辆分配客户子集模型和车辆在分配后的客户子集中路线成本优化的索套启发式的解法.算例表明,该算法求出的路线计划方案的成本,比用邻近搜索法得出的成本低.  相似文献   

8.
11月11日早上,雪花纷纷扬扬,气温骤降,郑州市公交三公司立即启动冰雪天气应急预案,所属各车队、修理站点齐心战严寒,保运行。各车队管理人员整夜坚守岗位,凌晨5点,冒着寒风开始逐车检查并启动车辆预热。与此同时,机务员主动留在车队加班加点,他们凌晨三点钟冒着严寒对所有车辆进行预热启动。许多驾驶员主动提前到队,帮助预热车辆。  相似文献   

9.
考虑充电区间、充电速率、电池核电状态、发车策略等综合因素,提出了以最小化车辆数为目标的单线路单充电站的纯电动公交车辆调度算法。该算法采用车队整体优化的方法,使得营运的车辆数最小,并达到每辆车发车次数的均衡。以东莞松山湖公交线路为例,分析了线路发车时刻、充电速率、车辆耗电对车辆数及单车发车次数的影响,并和常规公交车辆调度算法进行比较,结果表明:改进发车策略有效地减少了所需车辆数,且车辆利用率均衡,达到了最小化车队成本的目的。  相似文献   

10.
公路钢桁梁桥的横梁一般设置在桁架节点处,桥面系上的荷载主要通过横梁传递给桁架。横梁的纵向间距达到10 ~15 m,车辆荷载的纵向布置形式对横梁受力的影响较大,由于加载情况比较特殊,现行规范未明确规定计算横梁受力的车辆荷载参数。以上海大叶公路的金汇港桥为例,参考桥梁规范关于车队布置的相关规定和车距调查文献,考虑车队标准间距和极端堵塞间距两种工况,研究3 类车辆荷载作用下的横梁受力状况。结果表明:标准间距下,横梁在重车标准车车队、全重车车队加载下的正应力比单辆重车加载下的正应力分别高约12. 8%和17. 0%;横梁在重车标准车车队、全重车车队极端堵塞情况下的正应力比标准间距情况下的正应力分别高约35. 8%和40. 0%。此外,两片桁架之间横撑的设置方式、桁架外侧人非桥面结构对横梁正应力的影响分别约为9%和5. 5%,设计时应予以考虑。  相似文献   

11.
信号交叉口对城市道路的通行能力以及车辆的燃油消耗具有重要影响。本文提出一种在自动驾驶车辆和人工驾驶车辆混合交通流环境下的自动驾驶车辆的轨迹优化方法。基于交叉口信号灯的配时方案,构建车辆旅行时间估计模型,并以自动驾驶车辆燃油消耗最小以及通行效率最大为目标,构建自动驾驶车辆轨迹优化模型,对车辆进行动态轨迹规划和控制。车辆轨迹滚动优化模型采用高斯伪谱法进行离散化求解,并基于SUMO仿真平台对模型结果进行验证。仿真结果表明,自动驾驶车辆可以通过优化自身控制变量影响人工驾驶车辆的运行状态,减少交通流的排队以及时走时停现象。本文提出的车辆轨迹优化方法对于降低车队整体燃油消耗、提升车队平均速度、缩短平均行程时间具有重要作用。  相似文献   

12.
未来协同自适应巡航控制(Cooperative Adaptive Cruise Control,CACC)车辆和传统车辆混合交通流的稳定性决定了CACC技术对交通拥堵、能耗排放的改善程度.鉴于此,研究不同CACC渗透率时这种混合交通流的稳定性.应用基于轨迹数据标定的IDM(Intelligent Driver Model,IDM)模型和由加州伯克利PATH实验室实车测试验证的CACC模型分别作为传统车辆跟驰模型和CACC车辆跟驰模型.依据传统车辆在扰动下的稳定性,确定高稳态速度和低稳态速度,并考虑两种车型相对数量、相对位置的随机性,设计数值仿真实验.实验结果表明,在高稳态速度下,不同CACC渗透率时混合车队均整体稳定;在低稳态速度下,当CACC渗透率较小时,车队整体不稳定,CACC渗透率需达到50%以上时,才有可能使得混合车队由不稳定转变为稳定.  相似文献   

13.
为了对公交专用进口道设置前后交叉口运行效率做出评价,定量分析其对公交车辆运行的改善效果及对社会车辆的影响,通过分析各种实测饱和车头时距,提出考虑公共汽车形成车队行驶影响的交叉口进口道通行能力大车修正。进一步提出有、无公交专用进口道情况下的社会车辆、公交车辆和车道组的通行能力计算模型,并通过了仿真验证。模型分析表明,公共汽车形成车队行驶会对通行能力产生正面影响,设置公交专用进口道对社会车辆的影响没有预期的严重,当公共汽车在一定比例的情况下可能同时提高公共汽车和社会车辆的通行能力。最后通过实际交叉口案例分析,对结果进行了验证。  相似文献   

14.
即将服务于奥运村、媒体村和奥体中心的电动车车队日前成立。这支奥运电动车车队由北京公交集团的500名优秀司机和1000名后备党团员司售组成,届时将驾驶50部电动车和25部混合动力车等绿色环保车辆,直接为奥运提供交通服务。据悉,电动车车队的500名优秀司机,全部是劳动模范、礼仪服务标兵和总公司级优秀工作者。  相似文献   

15.
传统Robertson车队离散模型参数估计是基于历史数据,不能很好地反映交通流的动态变化特征,为解决这一问题,构建了车联网环境下的动态Robertson车队离散模型.考虑到车联网环境下车辆的行程时间数据易于获得,基于此可对Robertson模型的相关参数进行实时动态估计建立动态Robertson车队流量离散模型.通过实际调查数据,分析了上游交叉口车辆离去流率与下游交叉口车辆到达流率的关系,并将文中模型与静态Robertson模型、实际观测数据进行了比较分析.结果表明,文中动态模型更能反映交通流的车队离散规律,与静态Robertson模型相比,平均预测均方误差减少了30.68%.   相似文献   

16.
为降低交叉口车辆油耗,提高交叉口通行效率,以智能网联车车队作为引导对象,提出固定引导时长的车队车速引导策略.考虑车队初始速度和车队内车辆数的随机性,采用蒙特卡洛仿真获取单车平均油耗和平均行程时间.通过构建路段综合出行费用,对固定引导距离和固定引导时长两种策略进行了比较.研究结果表明:固定引导距离策略中,引导距离为350 m时综合出行费用最低;固定引导时间策略中,引导时间为6 s时综合出行费用最低;两种最优方案相比,后者油耗比前者低16.3%,后者行程时间比前者低7.2%,路段综合出行费用后者比前者低了10.2%;固定引导时长的车队车速引导策略可有效减少交叉口的车辆延误和燃油消耗.  相似文献   

17.
为了研究高速公路货车结伴行为,本文建立了一种适应于结伴货车车队的双 车道元胞自动机模型.分析了高速公路货车结伴特性及其对道路交通流的整体影响.研究 表明,结伴车辆在时空上是一个紧密联系的整体,流量较大时,车头时距分布曲线呈双峰 分布形式.同一流量时,不同长度车队间的平均速度差异较小,车队能保持较理想的速度 平稳行驶.结伴车队的存在激增了普通车辆的换道频率,改变了交通流状态,使基本图出 现明显的中断现象,当车队长度较长时,限制了同步流的产生.所提出模型刻画了高速公 路上货车主动结伴出行行为,为特殊情况下的交通流特性研究提供了参考和借鉴.  相似文献   

18.
针对不同能源公交车辆的运营特性差异,考虑城市公交电动化率限制和不同能源车辆间的替换率,以降低公交车队运营管理成本为优化目标,研究多车型纯电动公交车可供选择使用下的混合车队替换决策问题,以确定最佳车队替换计划。考虑规划期为10年,以青岛市公交系统为实例进行数值分析。结果表明:车型选择对车队替换计划和运营成本有显著影响,与单一纯电动公交车型比较,多车型的使用能够极大地降低运营成本;燃油公交车和纯电动公交车组成的混合车队,比燃油和电能混合驱动的公交车,在运营管理中更具经济性;在任意公交电动化率目标下,小型纯电动公交车投入量应明显高于大型纯电动公交车投入量;当公交电动化率小于一定阀值时,不推荐投入大型纯电动公交车使用。本文研究成果将为城市公交车队运营管理决策提供依据。  相似文献   

19.
正近日,四公司五车队在公园站点召开了全体驾驶员绩效考核动员会。会上,白玉军队长首先传达了《客运公司关于进一步细化绩效考核目标责任和检查考核程序的通知》文件内容。对绩效考核的9大项,42个内容进行了全面详细的培训和说明。强调车队重点做好车辆  相似文献   

20.
正1公交车队党支部建设福州公共交通集团实行两级管理模式,集团下辖若干个分公司,各分公司下辖若干个车队,车队是开展运营生产的基层单位。基层党支部设在分公司,如一公司下辖五个车队及马尾、闽侯营运公司,辖有87条线路、车辆1098部,员工2331人,其中党员97人,由一(分)公司党支部统一管理。因车队分布较散,东至马尾,西至闽侯,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号