首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
文中从钢管拱分段制作、工厂预拼装、吊装前预拼装、吊装过程线形控制、拱肋合龙等环节介绍了王村特大桥200m跨钢管砼拱桥七段吊装的测量方法及控制基本原理,并分析了测控效果。最终线形控制结果证实所用的测量与控制方法是有效的、成功的,可为大跨度拱桥安装的测量与控制提供新思路。  相似文献   

2.
缆索吊装法是大跨度拱桥最主要的施工方法。在拱肋吊装过程中节段接头由于采用螺栓临时连接而导致的非完全固结、主缆临时施工荷载引起的塔架偏位以及锚索和扣索由温度变化引起的自由伸缩都会对拱肋安装线形产生较大影响。该文采用考虑刚度损失的双单元模型计算方法,可在考虑拱肋节段接头非完全固结情况下较精确计算出拱肋安装线形的修正值;利用缆索和塔架的几何关系,推导出塔架偏位和锚索、扣索由温度变化引起的自由伸缩对安装线形的修正计算公式,计算出塔架偏位和锚索、扣索温度变化对拱肋安装线形的修正值;最后根据提出的考虑各项影响因素的大跨度缆索吊装拱桥拱肋安装线形计算公式计算得到拱肋安装线形。以云南澜沧江特大桥为实例进行验证,成拱线形误差满足规范要求。  相似文献   

3.
针对大跨度拱桥缆索吊装施工线形控制计算中有关模型建立、确定目标控制线形和吊装过程模拟计算等问题进行了研究.分别考虑吊装系统中各构件之间相互作用的复杂关系及其对结构的影响程度,根据最终成桥线形,采用倒拆法确定目标控制线形;根据设计线形和所有恒载、活载变形,确定预制时的无应力长度.针对拱圈预制节段的两种不同安装方法,提出分别采用正装迭代法和刚性支承-弹性索法计算拱肋安装坐标及扣索索力.通过工程实例分析表明.两种方法计算的扣索索力很接近,但安装坐标相差很大.施工控制结果表明,采用本文方法进行控制的拱肋线形与设计线形吻合良好.  相似文献   

4.
拱桥钢拱肋加工及吊装施工技术   总被引:1,自引:0,他引:1  
该文截取了长清路川杨河桥主桥下承式系杆拱组合桥梁中钢拱肋加工及拱肋吊装两个施工环节,系统阐述了钢拱肋在加工过程中对线形和质量的控制。拱肋吊装环节则是针对分段拱肋吊运和整体吊装架设过程吊装点位的选取进行了理论分析,为施工进一步提供了理论依据。  相似文献   

5.
拱肋吊装作为钢管砼拱桥施工中重要的施工工序,对保证拱桥线形至关重要,施工中必须对整个吊装过程进行控制。文中以贵阳花溪Ⅰ号大桥拱肋缆索吊装施工监控为例,介绍了大跨度钢管砼拱桥拱肋缆索吊装施工控制的关键技术。  相似文献   

6.
讨论了钢管砼拱桥拱肋吊装施工方法,介绍了钢管砼拱桥拱肋整体竖转吊装线形控制技术;以凌铁大桥为例,说明了拱肋整体竖转吊装线形控制的实施步骤,给出了凌铁大桥线形控制结果,结果表明采用整体竖转吊装线形控制方法可以满足施工线形控制精度要求。  相似文献   

7.
讨论了钢管混凝土拱桥拱肋吊装施工方法,介绍了钢管混凝土拱桥拱肋整体竖转吊装线形控制技术,并以凌铁大桥为例,说明拱肋整体竖转吊装线形控制的实施步骤,给出凌铁大桥线形控制结果。应用实例表明,采用整体竖转吊装线形控制方法,完全可以满足施工线形控制精度的要求。  相似文献   

8.
拱桥悬拼过程中各节段预抬量控制是施工的关键,直接影响大桥合龙时的拱轴线形.大宁河大桥是国内首座特大跨三肋钢桁拱桥,主跨400 m,主拱安装采用无支架缆索吊装法.三肋拱安装过程中,后安装拱肋节段高程将受到已安装拱肋节段的影响,与整体安装计算的预抬量有较大差异,因此必须计算出各拱片节段安装时的预抬量.该文首先采用有限元法计算整体安装时的节段预抬量,然后以整体安装位移为目标函数,基于最优化理论,运用ANSYS的一阶优化分析法进行迭代优化,计算出各拱片节段安装时的初始预抬量值.从施工实践看效果良好.  相似文献   

9.
宁波明州大桥为主跨450m中承式钢箱系杆提篮拱桥,居同类型桥梁世界前列。中跨加劲梁吊装采用大型缆索系统,南北岸对称施工。在加劲梁吊装过程中,与扣锚索拆除、吊杆安装、系杆索张拉穿插进行,相互影响。吊装过程须全程监控拱肋线形与拱脚水平推力,并以实时测量数据修正下阶段施工指令。该文介绍明州大桥主桥中跨加劲梁桥面吊装的具体施工过程,并对明州大桥全桥线形调整与控制的方法进行探讨。  相似文献   

10.
下承式钢管拱桥——空间倾斜系杆拱拱肋吊装技术   总被引:2,自引:1,他引:1  
太原南中环桥主桥为主跨180 m的下承式倾斜钢管拱结构,主、副拱向外侧倾斜。钢管拱采用大型履带吊机配合支架法施工,吊装顺序为先上游侧后下游侧,先主拱再副拱。每条拱肋划分为5个吊装节段和1个嵌补段。为方便吊装及安装就位,吊装前,通过计算确定吊点位置与吊绳长度。由于是倾斜起吊,吊装时须进行2个方向的旋转,首次栓绳使拱肋由水平横卧旋转至竖直,二次拴绳使拱肋由纵向水平旋转至需要角度。在气温较低的时段吊装嵌补段。施工中重点注意吊装安全及线形控制。实践证明该桥的吊装技术切实可行。  相似文献   

11.
钢管混凝土拱桥吊装过程线形监测方法   总被引:3,自引:0,他引:3  
在在跨度钢管混凝土拱桥吊装施工中,其关键技术之一是主拱线形控制。根据控制测量原理及技术要求,运用前方交会方法可保证每节钢管拱肋的吊装符合设计线形。工程实践表明,该方法运用恰当,实施方便,数据精度满足要求,达到了监测控线形的目的。  相似文献   

12.
拱肋线形控制是工程技术人员十分关心的问题,文章介绍了华光潭大桥主桥拱肋采用缆索立体吊装的施工技术,并对此进行了阐述,可为类似桥梁施工提供借鉴。  相似文献   

13.
车田江大桥主桥为280 m中承式钢箱提篮拱,拱肋采用全焊钢箱结构,拱肋安装采用缆索吊装和斜拉扣挂工艺。通过介绍该桥拱肋节段悬臂拼装施工技术,如拱肋首节段采用定位支架精确定位,拱肋标准节段采用缆索吊机配合斜拉扣挂系统进行精确安装,合龙段通过持续观测、吊装姿态模拟及精确配切等技术实现了拱肋的顺利合龙,可为类似工程提供参考。  相似文献   

14.
为使拱桥达到理想的成桥状态,结合岭兜特大桥工程,对采用预制拱肋、缆索吊装施工的钢筋混凝土箱形拱桥,利用结构有限元分析,根据倒装-正装计算法对施工过程中结构的受力特性和变形进行预测,施工控制中对主拱的应力、线形、扣索的索力等进行监测.结果表明:在拱肋吊装过程中拱轴线变化与计算一致,拱肋合龙后各控制点的实测高程与控制高程之差、轴线偏位均满足相关规范要求;主拱圈典型截面上的实测应力值与计算应力值接近;扣索实测索力与计算索力基本吻合,岭兜特大桥达到了理想的成桥状态.  相似文献   

15.
为提高大跨度钢管混凝土拱桥施工控制的精度,建立了PDL(多项式分布滞后)模型,并将其应用于某钢管混凝土拱桥的拱肋施工控制中。通过提出基于PDL模型的拱肋线形控制方法,将环境温度和索力施工偏差作为影响因子,建立拱肋安装线形的PDL预测模型。再利用EViews软件计算预测线形控制点在各施工阶段的偏差。分析比较拱肋施工过程监测数据与预测数据,结果表明,预测值能准确地反映拱肋线形变化趋势,即运用此预测方法对大跨径钢管混凝土拱桥进行拱肋线形控制和偏差预测调整是可行的。  相似文献   

16.
杭州九堡大桥主桥为3×210 m结合梁-钢拱组合体系拱桥.拱肋系统由主拱肋,副拱肋,主、副拱肋之间的横向连杆以及拱顶横撑等构件组成.拱肋采用分节段工厂内制造、现场拼装成整体后顶推施工.为保证拱肋制造精度符合要求,每跨主拱、副拱分别划分为14、13个吊装节段,采用“以直代曲”的方法近似拟合拱肋曲线,并定制相应的胎架进行制造.拱肋节段制造完后利用平板车运至主拼装场,用120 t龙门吊提升至拼装平台,松开龙门吊吊钩后利用三向调位千斤顶进行高程、里程(纵向)及横向精确调位,然后进行拱肋的焊接.九堡大桥拱肋按照该方法施工最终保证了拱肋线形连续性,提高了拱肋安装定位的精度和速度,确保了施工质量.  相似文献   

17.
大跨径混凝土箱型拱桥采用缆索吊装施工时通常采用分段吊装的方法,拱桥整体结构的形成要通过一系列结构体系的变化。大跨度钢筋混凝土拱桥缆索吊装施工时,扣索索力的大小直接影响到拱桥最终的受力状态和成桥线形,因此,索力大小的计算已成为拱肋安装的重要内容。以某大桥为工程背景,采用大型桥梁结构有限元软件Midas/civil建立空间有限元模型,并进行正装计算分析,针对某大桥拱肋吊装过程中扣索索力、应力的控制,计算各个阶段的索力,内力以及拱肋的强度,并将计算值与设计值、实测值进行对比。结果表明实测值与计算值相差不大,误差在容许范围内。  相似文献   

18.
钢管混凝土拱桥线形控制技术研究   总被引:2,自引:0,他引:2  
结合钢管拱肋节段的悬拼,讨论了施工过程中几种线形之间的关系,为施工线形控制提供了依据,在此基础上提出了计算和控制吊装线形的方法。这种方法也可运用于其他同类桥梁结构施工控制。  相似文献   

19.
厦门钟宅湾大桥主桥为58m 208m 58m三跨中承飞翼式钢箱提篮式拱桥。主桥所有钢构件均采用大型吊船吊装。总体安装顺序为先吊装钢主梁,然后吊装拱构件,再安装吊杆。钢主梁及拱肋均采用支架法安装。介绍了钢主梁及钢箱拱的安装技术。  相似文献   

20.
运用前方交会方法可保证每节钢管拱肋的吊装符合设计线形.工程实践表明,该方法运用恰当,实施方便,数据精度满足要求,达到了监控线形的目的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号