首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了研究不同级配冷再生混合料的早期强度评价指标及最佳乳化沥青用量(OEC),在RAP料中掺入不同比例的新集料,设计出4种不同级配的冷再生混合料,通过击实试验确定了不同级配混合料的最佳掺水量。针对我国现行规范中最佳乳化沥青用量确定方法的不足,以试件含水率为2%作为试件的试验状态。根据剩余含水率及强度检测结果,确定了采用静压试件在25℃鼓风烘箱中养生27 h后的无侧限抗压强度作为评价乳化沥青冷再生混合料早期强度的指标。以早期抗压强度和干、湿劈裂强度为指标,确定了不添加水泥时冷再生混合料在不同强度指标下对应的OEC。基于冷再生料早期强度,提出了以早期抗压强度为指标确定最佳乳化沥青用量。最后,以早期抗压强度为指标,确定了不同级配混合料的最佳乳化沥青用量。结果表明:同一强度指标下,4种冷再生混合料的最佳沥青用量大小顺序为XL40XL30XL20XL10,表明随着新集料掺量的增加,冷再生混合料的最佳乳化沥青用量也逐渐增加;同一冷再生混合料下,3种强度指标最大值对应的最佳乳化沥青用量大小顺序为OEC_dOEC_wOEC_e,与OEC_d和OEC_w相比,OEC_e少了0.24%~0.5%的乳化沥青用量;与采用OEC_d和OEC_w的冷再生混合料相比,在兼顾后期强度的同时,采用OEC_e的冷再生混合料具有较高的早期强度。冷再生混合料强度虽满足规范要求,但并未表现出较高的力学强度,在此可通过添加适量的水泥来进行改善。  相似文献   

2.
结合实体工程,采用SGC试验方法对乳化沥青冷再生混合料进行配合比设计,研究在不同压实功基础上的混合料设计参数的变化,从压实曲线的对比、混合料最佳含水率、最佳乳化沥青用量、混合料的强度等方面进行深入研究。研究结果表明,在不同压实功条件下,冷再生混合料的设计参数变化显著:随着压实功的增加,在相同压实次数下,冷再生混合料的最佳含水量减小、最佳沥青用量降低;在乳化沥青用量不变的条件下,混合料的劈裂强度、冻融劈裂强度比都随压实功的增加而增加。  相似文献   

3.
沥青路面冷再生技术将废旧沥青混合料作为原材料,加入乳化沥青、水泥及外加剂,拌合成新的混合料用于铺筑路面,可节约材料、降低造价、节能环保。现采用不同乳化剂类型的乳化沥青作为结合料,在不同乳化沥青用量和水泥用量条件下,进行冷再生沥青混合料物理参数及高、低温性能的试验研究,分析乳化剂类型、乳化沥青用量和水泥用量对混合料高、低温性能的影响。通过试验研究,得到了满足混合料性能规范要求的最佳乳化沥青用量和水泥用量。研究结果对冷再生沥青混合料的工程应用提供理论依据。  相似文献   

4.
乳化沥青冷再生混合料高温稳定性研究   总被引:1,自引:0,他引:1  
采用50℃车辙试验,分析了温度、基质沥青针入度大小、乳化沥青用量、水泥掺量、含水率和养生时间对乳化沥青冷再生混合料高温稳定性的影响.结果表明:乳化沥青冷再生混合料在后期强度形成后具有较好的高温稳定性,且混合料高温稳定性受温度的影响没有热拌沥青混合料敏感;采用低标号沥青或增加水泥用量均能提高冷再生混合料的高温稳定性,但二者的变化对冷再生混合料高温稳定性影响不大;随着养生时间增加乳化沥青冷再生混合料的抗变形能力增强且早期含水率变化对抗变形能力影响显著,而后期含水率变化对高温稳定性影响不大.  相似文献   

5.
改性乳化沥青-水泥就地冷再生混合料性能研究   总被引:4,自引:1,他引:3  
为了评价改性乳化沥青-水泥就地冷再生混合料的性能,应用了就地冷再生混合料的配合比设计程序,包括原材料选择、级配设计和性能评价.专用于就地冷再生的改性乳化沥青采用了复配技术和改性剂SBR胶乳,新集料用于调整RAP级配,基于不同改性乳化沥青和水泥含量的性能试验,确定了最佳改性乳化沥青和水泥含量;同时,对通车1a后的再生路面进行了跟踪观测,推荐了用作面层的乳化沥青就地冷再生混合料的性能评价标准.结果表明,改性乳化沥青-水泥就地冷再生混合料具有较好的强度性能、水稳定性和高温稳定性,实践表明就地冷再生是一种经济有效的养护方式,具有明显的经济效益和社会效益.  相似文献   

6.
为改善乳化沥青冷再生沥青混合料早期强度低的缺点,通过掺加早强水泥的方法开展了乳化沥青冷再生沥青混合料超早强技术研究,确定了再生混合料最佳含水率和最佳乳化沥青用量,并对其路用性能进行了评价。试验结果表明:早强水泥可显著提升乳化沥青冷再生混合料的早期强度,加入2%早强水泥后1d龄期劈裂强度已达到原来掺加2%普通水泥时3d的强度;3d龄期强度可以达到原7d龄期强度,而两者28d龄期的强度接近;1d劈裂强度可满足基层要求,3d劈裂强度可满足下面层要求;在早期强度满足要求的条件下,再生混合料仍具有较好的水稳定性、高温稳定性及低温抗裂性等路用性能。乳化沥青冷再生混合料早强技术能有效缩短施工工期,减轻因路面维修封闭交通带来的负面社会影响。  相似文献   

7.
在RAP比例为20%、50%两种条件下、选用3种水泥用量和2种乳化沥青用量进行水泥—乳化沥青再生沥青混合料(CEARM)配合比设计试验,通过比较CEARM初期强度和后期强度,分析了水泥对乳化沥青冷再生混合料强度的影响。结果表明:水泥能显著提高再生混合料的早期强度,对后期强度的影响因RAP比例的不同而异,并据此提出了水泥和乳化沥青适宜用量的确定方法。  相似文献   

8.
为明确泡沫(乳化)沥青和水泥掺两种粘结材料对冷再生混合料路用性能和耐久性的影响,通过车辙试验、贯入剪切试验、低温弯曲试验、加速加载试验、四分点加载疲劳试验、研究了泡沫(乳化)沥青和水泥两种粘结材料对沥青路面冷再生混合料高低温性能、长期高温抗变形能力以及抗疲劳耐久性性能的影响。试验结果表明,泡沫(乳化)沥青冷再生混合料车辙变形量主要是压密变形所致,水泥掺量越大泡沫(乳化)沥青冷再生混合料抗高温性能和高温剪切疲劳性能越好;随着水泥、沥青粘结料掺量增大,冷再生混合料低温抗裂性能呈先增大后减小的变化趋势,对于泡沫(乳化)沥青冷再生混合料低温抗裂性能而言,存在一个最佳的泡沫(乳化)沥青和水泥用量,在2.0%~4.0%泡沫沥青和2.5%~4.5%乳化沥青用量下适宜的沥青粘结料与水泥掺量比例为1.5∶1~2.7∶1;对于泡沫(乳化)沥青冷再生混合料抗疲劳性能而言,存在一个最佳的沥青粘结料和水泥掺量,为确保冷再生混合料具有最优的抗疲劳性能需达到沥青结合料和水泥掺量的相对平衡,用于冷再生混合料适宜的水泥掺量为1.0%~2.0%。为完善泡沫(乳化)沥青冷再生混合料的材料组成设计方法以及性能评价体系提供了参考。  相似文献   

9.
水泥乳化沥青冷再生混合料性能评价   总被引:2,自引:0,他引:2  
乳化沥青就地冷再生技术近年在我国得到了较多的应用,在研究了乳化沥青冷再生的机理后,通过对比试验确定改性乳化沥青的性能优于普通乳化沥青,然后分析在不同的水泥用量和乳化沥青用量条件下再生混合料的性能变化,以决定乳化沥青用量及水泥用量,试验结果表明改性乳化沥青冷再生混合料具有较好的高温稳定性和水稳定性。  相似文献   

10.
为了分析水泥对改性乳化沥青冷再生混合料力学性能的影响,以AC - 25沥青混合料级配为基准,通过室内对比试验,对不同水泥掺量的改性乳化沥青冷再生混合料的疲劳耐久性、低温稳定性、高温稳定性及水稳定性等力学性能进行系统研究.研究结果表明,一定掺量的水泥有利于改善改性乳化沥青冷再生混合料的疲劳耐久性,但水泥增加至3.0%时,其进一步的改善效果并不显著;以破坏应变评价混合料低温性能时,指标具有较高的灵敏性,当水泥用量为2.0%时低温性能最佳;水泥的掺加显著地提高了改性乳化沥青冷再生混合料的高温稳定性和水稳定性,其在改性乳化沥青冷再生混合料中发挥着重要的作用.  相似文献   

11.
乳化沥青冷再生混合料疲劳性能研究   总被引:1,自引:0,他引:1  
采用目前工程上常用的两档沥青路面铣刨旧料对RAP掺量为80%和100%的乳化沥青冷再生混合料进行材料组成设计.通过击实试验和劈裂试验分别确定其最佳流体含量和最佳乳化量用量.在配合比设计基础上采用控制应变加载模式对乳化沥青冷再生混合料疲劳性能进行试验研究,确定了加载较为合理的应变水平,即300,250,200με和150με.试验结果表明,在应变水平较高时,两种RAP掺量下乳化沥青冷再生混合料能承受有限的荷载作用次数,当应变水平降低到150 μe时,两种RAP掺量混合料在150万次荷载作用下仍未破坏,采用劲度模量与荷载作用次数预估的方法确定了疲劳寿命.通过对4种应变水平-荷载作用次数进行疲劳曲线拟合,提出两种RAP掺量下乳化沥青冷再生混合料的应变控制指标.  相似文献   

12.
为研究材料组成变化对乳化沥青冷再生混合料永久变形特性的影响,在40℃试验温度下改变乳化沥青和水泥掺量,对乳化冷再生混合料进行动态单轴蠕变试验。结果显示,掺入适量水泥可提高混合料早期抗车辙性能和劲度模量,改善混合料的弹性恢复性能;乳化沥青用量增加使混合料抗变形能力和劲度模量下降,其用量超过4%时抗变形能力下降速率增大,存在令残留变形率最低的最佳乳化沥青用量;水泥可提高混合料的永久变形性能,但提高效果受水化反应程度影响,考虑混合料和易性、抗裂性、经济性等,水泥用量不宜过大;过大的乳化沥青用量对混合料永久变形性能有不利影响,工程应用中乳化沥青用量宜等于或略小于最佳沥青用量。  相似文献   

13.
为了检验沥青稳定类冷再生混合料性能,回答乳化沥青与泡沫沥青孰优孰劣的争论,采用劈裂试验、车辙试验对泡沫沥青和乳化沥青冷再生混合料性能进行了对比试验研究。研究结果表明,乳化沥青和泡沫沥青冷再生混合料的力学特性有明显的温度依赖性,均为粘弹性材料;冷再生混合料15℃劈裂强度满足规范中密级配粗粒式热拌沥青混凝土强度范围;泡沫沥青冷再生混合料劈裂强度、浸水24 h后的劈裂强度略高于乳化沥青冷再生混合料;乳化沥青冷再生混合料的动稳定度显著高于泡沫沥青冷再生混合料,且都远超过规范对改性沥青混合料动稳定度的技术要求。乳化沥青和泡沫沥青冷再生混合料性能均能满足沥青路面中下面层的要求。  相似文献   

14.
乳化沥青冷再生混合料需要一定的破乳时间形成强度,从而导致施工工期延长,且混合料强度较低会致使路面后期出现松散、坑洞等病害。通过添加水泥一方面可以加速乳化沥青的破乳速度,同时能够显著提高冷再生混合料的早期强度。该文通过粘结力试验和抗磨耗试验对不同水泥掺量的乳化沥青冷再生混合料早期强度进行了分析研究,且对其水稳定性进行了分析研究。结果表明:随着水泥掺量的不断增加,乳化沥青冷再生混合料的早期强度和抗水损害性能逐渐增大,同时水泥加速了乳化沥青冷再生混合料早期强度的获取速率。然而水泥用量过高时会使冷再生混合料变脆,导致混合料低温性能降低,因此在设计时需要严格控制水泥的掺量。  相似文献   

15.
为获得早强快修的冷再生快速修补沥青混合料,室内采用乳化沥青、旧沥青混合料和由复配普通硅酸盐水泥、早强剂和减水剂组成的填料进行制备,并对其配合比、路用性能进行设计研究。结果表明:冷再生快速修补中旧料在集料中的掺配比例达到55%,最佳含水量为3.7%,最佳乳化沥青用量为3.8%;当最佳早强型填料用量为2.5%时,可显著提高冷再生快速修补料的早期强度且表现出良好的疲劳寿命;同时,冷再生快速修补表现出较好的路用性能。  相似文献   

16.
为研究冷再生混合料中的旧沥青是否可以被激活,何种条件下可以被激活从而发挥胶结作用,量化分析旧沥青胶结作用在再生沥青混合料中贡献率,文中设计旧沥青活性激发试验方案进行探究。结果表明,旧沥青可以被激活从而在再生沥青混合料中发挥胶结作用并且贡献率超过35%。在最佳含水量下,不添加乳化沥青,无论是否添加水泥和矿粉,在10~60℃时RAP均可成型,并且主要由旧沥青发挥胶结作用,且随着料温的升高,旧沥青发挥的作用越大。  相似文献   

17.
采用车辙试验对乳化沥青冷再生混合料高温稳定性进行全面的研究,结果表明:乳化沥青冷再生混合料和热拌沥青混合料的动稳定度均随着温度的升高而降低,但乳化沥青冷再生混合料的高温稳定性和抵抗永久变形的能力更为突出;随着水泥用量的增加,乳化沥青冷再生混合料的动稳定度得到明显的提升,为保证混合料的整体路用性能建议乳化沥青冷再生混合料水泥掺量取0.5%~1.0%;减少乳化沥青用量可以一定程度上提升混合料的高温稳定性,但会引发混合料出现破碎松散病害,合理的选取其用量是保证乳化沥青冷再生混合料综合路用性能的关键之一;养生时间对乳化沥青冷再生混合料的动稳定度和变形量有很大影响,应保证足够的养生时间以保证混合料良好的路用性能。  相似文献   

18.
水作为乳化沥青冷再生混合料的润滑剂,会对混合料的可压实性和耐久性产生较大影响.在最佳油石比下分别采用击实最佳含水率(OMC)的110%、100%、90%、80%、70%、60%作为拌和用水量,根据乳化沥青胶浆对粗集料的裹覆状态、混合料的孔隙率、干ITS、湿ITS和TSR的变化规律,最终选择70%~80%OMC作为乳化沥青就地冷再生混合料的最佳拌和用水量.同时针对不掺加水泥、水泥分别以内掺和外掺的形式加入,比较了3种方案对乳化沥青混合料性能的影响,发现乳化沥青冷再生中水泥按外掺的形式加入时可以提高混合料的水稳定性.  相似文献   

19.
《公路》2015,(3)
随着乳化沥青冷再生混合料逐渐在高等级公路较高层位的应用,其低温抗裂性能需要引起更多的关注。通过半圆弯曲(Semi Circle Bending,SCB)试验,采用断裂能指标评价乳化沥青冷再生混合料的低温性能,提出不小于1 000J/m2的评价标准。同时与低温弯曲试验进行对比分析,结果表现出相同的变化规律,即不添加水泥的乳化沥青冷再生混合料其低温性能相对较差,随着水泥用量的增加,冷再生混合料低温性能逐渐提高,但随着水泥用量的继续增加,冷再生混合料表现出一定的脆性,导致混合料的低温性能降低,因此,建议乳化沥青冷再生混合料设计时应严格控制水泥用量,并建议水泥用量不超过1.5%为宜。  相似文献   

20.
采用垂直振动成型方法制备圆柱体试件,通过试验研究了乳化沥青类型和水泥掺量对高速公路路面上面层掺回收料就地冷再生混合料强度的影响。结果表明:与普通中裂乳化沥青冷再生混合料相比,SBR与SBS改性乳化沥青冷再生混合料力学强度可分别至少提高15.0%,9.0%;掺水泥1.5%乳化沥青冷再生混合料的马歇尔稳定度、浸水马歇尔稳定度、劈裂强度和抗剪强度分别至少提高了11.0%,13.0%,19.0%,85.0%。因此,根据力学性能最优原则,选取SBR改性乳化沥青作为冷再生混合料的胶结料;考虑材料经济性问题,建议冷再生混合料中水泥掺量为1.5%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号