首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用断裂力学有限元模型,结合疲劳断裂理论,对温度荷载作用下反射裂缝疲劳寿命的理论和计算方法进行了阐述,同时计算并分析了反射裂缝疲劳寿命的影响因素,为防裂材料和防裂层结构的选择提供理论依据。  相似文献   

2.
采用断裂力学有限元模型,结合疲劳断裂理论,对温度荷载作用下反射裂缝疲劳寿命的理论和计算方法进行了阐述,同时计算并分析了反射裂缝疲劳寿命的影响因素,为防裂材料和防裂层结构的选择提供了理论依据.  相似文献   

3.
通过计算和分析沥青混合料的冲击韧性和疲劳寿命,提出了旧水泥混凝土路面的沥青加铺层抵抗反射裂缝能力的评价方法.材料的冲击韧性越大,加铺层抵抗反射裂缝的能力越强;同时还可得到各种因素,如沥青种类、含量、集料级配等与沥青路面抵抗反射裂缝能力的关系.  相似文献   

4.
为研究沥青混凝土加铺后路面的疲劳寿命,在国内外关于沥青混凝土加铺层的设计方法、材料等基础上进行了广泛研究,采用不同的路面破损控制指标对沥青混凝土路面加铺层的疲劳寿命进行了分析。研究结果表明:以车辙和反射裂缝作为控制指标预估沥青路面加铺层疲劳寿命是可行的。因此,分析路面疲劳寿命时应从路面主要破坏特征入手,分析各个控制指标下路面的使用寿命。  相似文献   

5.
基于断裂分析的沥青路面疲劳寿命预测   总被引:1,自引:0,他引:1  
罗辉  朱宏平 《中外公路》2007,27(4):49-52
半刚性基层由于温缩和干缩的影响不可避免地产生裂缝。在交通荷载的重复作用下,裂缝会发展到沥青面层,形成反射裂缝。沥青路面的疲劳寿命是路面设计的一个重要内容,因此,对路面结构进行疲劳寿命预测,以验证设计的合理性是非常必要的。该文利用三维有限元断裂模型,以疲劳断裂力学基本理论为基础,对沥青路面的疲劳寿命进行了预测与分析,结果显示,该方法简单可行。  相似文献   

6.
按照裂缝缓慢发展理论对柴油机颗粒过滤器(DPF)寿命进行了计算,并研究了受再生过程最高温度影响的预期寿命.过滤体多孔蜂窝式结构的疲劳特性遵循裂缝缓慢发展理论,按失效的DPF温度分布算出最大热应力.把4点抗弯强度与最大热应力的比值作为校正系数,以修正各种温度分布情况下算出的热应力.4点弯曲疲劳试验中得到的疲劳特性与上述结果作了比较.  相似文献   

7.
通过在路表面施加移动荷载来模拟真实行车荷载,利用三维动态有限元技术,对含裂缝多层体系进行了计算,得到了路面各结构层反射裂缝尖端动态应力强度因子,并分析了移动荷载与静载情况下Ⅰ型、Ⅱ型强度因子的差别.通过分析发现反射裂缝在底基层和基层时动态应力强度因子最大值要明显大于静载计算值,最大差别能达到几倍,而裂缝扩展到面层以后,两者结果差别不大.最后通过广义Paris公式对动静荷载下路面的疲劳寿命进行了计算,计算结果表明动载疲劳寿命远低于静载疲劳寿命.  相似文献   

8.
低温地区沥青混合料冻融疲劳特性分析   总被引:1,自引:1,他引:1  
通过冻融及非冻融沥青混合料疲劳试验对沥青混合料的疲劳特性进行了研究,利用试验结果,得出了冻融前后不同油石比沥青混合料的耗散能疲劳方程。分析结果表明:冻融对混合料疲劳寿命产生很大影响,同时提出了高寒地区满足抗疲劳性能的最小油石比。为工程设计提供了理论依据。  相似文献   

9.
基于传统疲劳强度理论,用修正系数的方法来估计裂缝扩展阶段的寿命没有任何的理论依据.提出两阶段方法预估沥青路面结构的疲劳寿命,运用有限元方法对沥青路面进行疲劳断裂分析,研究沥青路面裂缝的扩展规律.  相似文献   

10.
反射裂缝问题是新建半刚性基层沥青路面的主要病害之一,应用土工合成材料防治沥青路面反射裂缝是一种行之有效的工程措施。在道路工程中一般将土工合成材料设置于沥青面层和基层之间或者沥青加铺层和旧路之间,可起到提高沥青混凝土抗反射裂缝能力和疲劳寿命的作用。  相似文献   

11.
在路面改造中,旧水泥路面加铺沥青是一种十分有效的方法,但容易出现反射裂纹的问题。该文运用断裂力学和有限元数值模拟相结合的方法,研究在交通载荷作用下沥青表层反射裂纹扩展情况。通过应力强度因子对产生病害的路面进行了疲劳断裂寿命预估。探讨了裂纹反射深度、沥青加铺层弹性模量和厚度对产生病害路面疲劳断裂寿命的影响。研究表明:反射裂缝在交通载荷作用下以Ⅰ和Ⅱ型扩展为主;整个反射裂纹上最危险点在裂纹的边缘,比较容易发生裂纹扩展;交通载荷作用在水泥混凝土板边缘处对路面破坏最严重;反射深度越深,剩余的疲劳断裂寿命越少;增加沥青加铺层的厚度和降低沥青加铺层的弹性模量能够增加其疲劳断裂寿命;相比改变加铺层弹性模量,增加加铺层厚度对于路面的疲劳断裂寿命影响更明显。  相似文献   

12.
沥青路面随着服役年限的增加,路面横向裂缝逐年递增,在不同段落区间,横向裂缝分布密度不同,笔者结合相关工程,开展了不同裂缝密度段的路面结构性能研究以及裂缝的产生对路面结构性能的影响研究。结果表明:对于不同裂缝密度段,裂缝密集段混合料疲劳寿命分别是裂缝中等段和较少段的67%和34%,断裂能分别是裂缝中等段和较少段的76%和52%,裂缝的产生加速了面层混合料性能的衰减;裂缝两侧,对于面层混合料,相比距离裂缝2.5m处的芯样,0.5m和1.5m处疲劳寿命分别减少了41%~68%、12%~52%,对于基层混合料,裂缝两侧1.5m内,基层疲劳寿命均小于100次,说明裂缝的产生加速了路面结构寿命的衰减,裂缝对周围0.5m范围内的路面结构强度及性能影响最大。  相似文献   

13.
利用断裂力学方法对冷再生基层材料的疲劳裂纹扩展进行分析,选择合适的断裂力学公式及参数,进而推导出疲劳寿命预估方程,分析方程中参数的取值并给出算例.通过算例得到的结果对影响疲劳寿命的因素进行分析,并与通过试验得到的数据进行对比.结果表明,用断裂力学方法预测含裂缝冷再生基层材料的疲劳寿命更合理.  相似文献   

14.
疲劳裂缝是路面破坏的一种,为路面受到长期、反复的荷载后,由内部产生的微小破坏开始,渐渐加深、延长,从沥青面层底部由下而上累积成为类似鳄鱼皮般的表面龟裂,进而影响路面的性能。研究的主要目的是探讨沥青混凝土的裂缝生成与疲劳寿命,采用级配类型为AC—20的某高速公路的现场钻芯试件,进行室内控制应变疲劳试验,应用劲度变化曲线的裂缝生成机制,与应力-应变回圈面积的消散能理论,推估沥青混凝土疲劳寿命与临界应变。结果表明,应用劲度变化曲线与消散能理论,所得的疲劳寿命都有一致性,故可判断其都可作为疲劳寿命的定义。其中以劲度变化曲线较为便捷,可以作为推估裂缝生成与疲劳寿命的参考方法。可作为沥青混凝土路面疲劳研究与设计的参考。  相似文献   

15.
根据反射裂缝的产生机理,系统地研究了沥青稳定碎石基层混合料的强度特性、抗永久变形能力及疲劳特性等路用性能,重点分析了沥青稳定碎石基层防止反射裂缝的性能。  相似文献   

16.
沥青路面预防性养护时机研究   总被引:1,自引:0,他引:1  
谢挺 《公路与汽运》2009,(4):106-109
通过沥青混合料的MTS中点小梁疲劳弯曲试验获得了疲劳寿命方程,分析了裂缝长度与N/Nf的相关关系;结合实际道路情况确定出沥青路面标准轴载作用下的疲劳寿命,并对疲劳破坏进行了定量的预测;针对疲劳破坏对沥青路面性能的影响规律,对沥青路面预防性养护时机进行了研究,提出了基于裂缝长度的沥青路面预防性养护最佳时机的确定方法。  相似文献   

17.
针对钢桥面铺装层容易出现疲劳开裂与车辙破坏的特点,提出采用4种有代表性的铺装层沥青混合料,通过应变控制模式下的四点弯曲疲劳试验方法,研究其疲劳特性以提高钢桥面铺装层的抗疲劳耐久特性和高温稳定性。通过多个应变水平下的疲劳试验,分析了沥青混合料劲度模量与改性沥青品质、疲劳寿命、滞后角的关系,验证了疲劳寿命与累积耗散能在双对数坐标下的线性关系,得出不同改性沥青混合料的疲劳曲线和疲劳方程。不同的铺装层材料很难建立相同的疲劳预测模型,只能根据直接的疲劳试验获得混合料的抗疲劳耐久特性。  相似文献   

18.
罗少辉  李强 《公路与汽运》2022,(1):87-91,150
延缓裂缝反射是旧水泥砼路面"白改黑"工程中的重要问题之一.文中通过室内疲劳试验,结合扩展有限元(XFEM)模拟动态裂纹扩展,研究高分子抗裂贴的抗裂性能、裂纹扩展规律及力学阻裂机理,预估加铺结构的疲劳寿命.结果表明,高分子抗裂贴抗裂性能优秀,其加筋作用对初裂后延缓裂纹扩展效果明显,抵抗张拉型反射裂缝的效果优于剪切型;普通...  相似文献   

19.
当抗疲劳材料具有较好的疲劳特性时,其对柔性长寿命路面结构具有较大的影响。本文采用普通沥青混合料、SBS改性沥青混合料、环氧沥青材料作为抗疲劳层,研究三种材料对路面结构力学特性、结构厚度、疲劳寿命的影响。研究发现,当抗疲劳层材料具有较高的疲劳特性时,可起到减薄沥青层整体厚度、提高路面疲劳寿命的作用。  相似文献   

20.
针对半刚性材料作为长寿命沥青路面基层使用问题,通过拟定典型路面,采用BISAB3.0计算了不同沥青层厚度下半刚性基层沥青路面的承载能力和疲劳寿命,分析了沥青层加厚对半刚性基层的基层应力和半刚性材料干缩、温缩的影响,研究了半刚性材料作为长寿命沥青路面基层的适应性.结果表明:相同荷载作用下,沥青层厚度增加,半刚性基层层顶压应力和层底拉应力明显减小,基层疲劳寿命大幅提高;半刚性基层受温度、水等外界因素影响明显减弱,半刚性基层的开裂、冲刷和路面反射裂缝等问题得以有效控制.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号