首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
苏杨  高宗余 《桥梁建设》2012,42(2):79-84
为研究大直径钢管混凝土桩在桥梁工程中的应用,以某预应力混凝土连续刚构桥为背景,分析该类桩基的设计、施工及试验.该桥采用高桩承台钻孔桩基础(由4根直径为1.8m的钢管混凝土嵌岩柱桩构成),根据桩基连接构造的合理设计原则,钢管混凝土桩与承台采用环形牛腿连接,与基岩采用双套管连接.钢管混凝土桩采用栽桩法和桩侧填石压浆工艺施工.通过对桩顶悬臂端施加水平荷载进行单桩抗推刚度试验,结果证明了该桥钢管混凝土桩是安全可靠的.  相似文献   

2.
孟加拉帕德玛大桥主桥全长6.15km,水中墩设计采用Φ_外3.0m、壁厚60mm、长度为101.126~125.457m、倾斜度为1∶6的超长大直径倾斜钢管桩基础。对10根Φ1.5m的钢管桩进行试桩研究,对比试桩地勘、静载试验及PDA测试承载力结果,分析试桩桩端持力层位置、桩底和桩侧压浆效果。结果表明,桩端持力层位置不能位于软弱的黏土层内,或离软弱的黏土层较近;密实粉细砂地质条件下,界面压浆能够显著起到提高桩端承载力、减小桩基沉降的作用;在土层较为均匀的粉细砂地层中,采用超细水泥浆液、通过"帘幕注浆法"进行桩侧渗透压浆,能显著提高桩侧极限摩阻力。正式桩根据地勘结果和试验结果,采用调整桩底标高、增加桩长、增加中心直桩以及带桩侧压浆槽等形式。  相似文献   

3.
孟加拉帕德玛大桥水中墩基础为大直径(ф3m)闭口复合截面斜钢管桩,所处地层为密实粉细砂。为了恢复钢管桩取土过程中,对土体的扰动导致的应力释放,以及减少桥梁在运营阶段产生的沉降值,采用界面压浆法对土塞和桩端土体进行全断面充分预压。结果表明:密实粉细砂地质条件下,较少的压浆量即能形成高的压浆压力,从而在界面位置对土塞形成充分预压;界面压浆能够显著起到提高桩端承载力、减小桩基沉降的效果;界面压浆法可以实现水泥浆在界面位置的全断面填充和预压,是一种稳固可靠的压浆方法,操作简单且易于控制。  相似文献   

4.
沪通长江大桥水中墩混凝土用量为1 325 000m3,为确定超大体量水中混凝土的供应系统,结合河床标高和混凝土需求量,按浅水区和深水区进行混凝土拌和站总体规划。通过对钢平台拌和站和吹填筑岛拌和站两种方案在供应能力、施工难度、建设周期和造价等方面进行比选,确定在浅水区采用吹填筑岛拌和站,筑岛高度约6.1m,围堤顶外围设置1圈高1m、厚0.3m的现浇混凝土挡墙;深水区采用钢平台拌和站(由钢管桩+桩顶分配梁+贝雷梁+钢桥面系组成)。浅水区吹填筑岛拌和站施工时,先施工围堤,再进行围堰内吹填砂和围堰外侧边坡防护施工,铺填片石基础,最后浇筑混凝土,形成平台。钢平台拌和站施工时,先插打钢管桩,再依次施工桩间联结系、桩顶分配梁、平台主梁及桥面系。  相似文献   

5.
昌九高铁扬子洲赣江公铁大桥西支主桥为(48+144+320+144+48) m无砟轨道钢箱桁组合梁斜拉桥。桥塔墩位于通航河道内,桥位处河床覆盖层浅,基岩强度高,基础由大直径钻孔桩和矩形嵌岩低桩承台组成,承台采用锁口钢管桩围堰施工方案。G33号主墩围堰平面设计尺寸54.56 m×28.52 m,锁口钢管桩采用Q345B材质■1 020 mm螺旋钢管,长28 m,钢管桩之间采用C-T形锁扣连接;围堰设置4层内支撑,单层内支撑设3道对撑,内支撑四角设型钢斜撑;基底设置混凝土垫层参与围堰结构受力。围堰采用XR360旋挖钻机在岩层中引孔,孔内换填细砂后插打钢管桩,钢管桩壁内、外两侧换填砂采用高压旋喷注浆加固。围堰设置智能化监测系统,对围堰受力、变形等进行实时动态监控。实践证明,该桥围堰结构安全可靠、止水效果良好、施工快捷高效。  相似文献   

6.
沈涛 《世界桥梁》2020,(3):22-26
孟加拉帕德玛大桥水中40个主墩采用直径3.0m钢管桩基础,其中11个主墩共计77根钢管桩在桩身周围均布了10道压浆槽,对每道压浆槽进行桩侧压浆,以提高钢管桩承载力。桩侧压浆水泥浆采用超细水泥配置而成,以适应密实超粉细砂地质条件。先将10道压浆槽内泥砂清除至设计标高;再布置2条线路对2道压浆槽进行同步换浆和桩侧压浆,压浆速度控制在10L/min以内,压浆压力按1,2,3MPa分级设置。压浆量达到设计压浆量或压力达到3 MPa且无法继续注浆时,继续注浆10min或保压10min,即完成该压浆槽桩侧压浆,按轮次连续完成其它压浆槽桩侧压浆。荷载试桩和工艺试桩结果表明,通过实施桩侧渗透压浆技术,可提高钢管桩与土体之间的摩阻力约58.2%,有效提高了钢管桩承载力。  相似文献   

7.
超厚粉细砂地层组合压浆桩压浆效果试验   总被引:1,自引:0,他引:1  
为了研究超厚粉细砂地层中桩端、桩侧组合压浆效果,基于石首长江公路大桥工程中6根超长大直径钻孔灌注桩原位静载荷试验,通过对比分析组合压浆前、后钻孔灌注桩的试验结果,研究组合压浆对超长大直径钻孔灌注桩承载力性状、桩端阻力及桩侧摩阻力的影响。通过钻孔取芯、标准贯入试验分别对水泥浆液影响范围和桩基组合压浆的影响效果进行综合分析,得到该工程主桥试桩压浆前、后粉细砂土层侧阻力经验系数,建立压浆后侧摩阻力与压浆前标贯击数N的关系式。研究结果表明:与组合压浆前相比,组合压浆后的桩端阻力与桩侧摩阻力均有大幅度增加,且灌注桩极限承载力提高幅度为94.25%~151.51%,由此可见组合压浆的效果非常显著;组合压浆桩的承载性能明显优于桩端压浆桩,其对桩基的荷载传递特性产生了明显影响;钻孔取芯试验明确了水泥浆液在桩周和桩端以下一定范围的分布情况,证实了组合压浆的有效性;标准贯入试验结果表明组合压浆后桩侧土的标贯击数N明显提高,研究成果可直接运用于该大桥桩基设计,并可为类似超厚粉细砂地层中桥梁桩基工程提供参考。  相似文献   

8.
加蓬共和国Ogooué特大桥桥位处的地层为深厚砂土层,基桩均采用钻孔灌注桩,采用数值方法研究了桩长、桩径、桩土弹模比、桩端土与桩侧土弹模比对超长钻孔桩承载性状的影响,分析了各因素下桩顶位移-荷载曲线、桩端位移-荷载曲线、桩身轴力传递、桩身压缩以及桩侧摩阻力的承载特性。结果表明:在一定桩长范围内增加桩长可提高基桩承载力,超过一定长度后增大桩长并不能提高基桩承载力;超长基桩在达到承载力时桩顶位移大,其中桩身压缩量占较大的比例,在大吨位超长基桩设计时应选择合理的长径比来提高基桩承载力;提高混凝土强度等级对增加基桩承载力较小,但能改善桩顶的沉降特性,基桩混凝土强度等级可选用C30~C35;增大桩端土的弹性模量可改善桩顶荷载-位移特性;其研究成果为砂土地区超长钻孔桩的设计与施工提供了一定的理论参考依据。  相似文献   

9.
嘉绍大桥两岸水中区引桥采用ф3.8 m大直径钻孔桩,考虑工程规模及复杂的水文地质条件,选用国内首次采用的KTY-4000型大扭矩动力头液压式旋转钻机施钻,气举反循环排渣,泥浆护壁,水下填充混凝土成桩。主要施工流程为:施工准备;钻孔平台搭设;钢护筒插打;摆放钻机、钻孔;终孔、检孔、清孔;安放钢筋笼、二次清孔;水下填充桩身混凝土;桩底压浆、桩头凿除、超声波无损检测。施工前对可能出现的问题进行分析,并采取了针对性的防范措施,施工仅发生了可塑状粉质粘土包钻和钻孔漏浆问题。目前施工进展顺利,说明该方案是可行和适用的。  相似文献   

10.
后压浆技术可大幅提高钻孔灌注桩的承载力,已广泛应用于中国的基础工程领域。该文基于桩端后压浆的受力机理分析,归纳影响荷载传递的主要因素,确定注浆体直径、注浆体高度与桩径之比的控制范围。另利用非线性有限元分析软件对黄土地区采用桩端后压浆技术的钻孔灌注桩进行三维数值仿真分析,研究桩端后压浆技术钻孔灌注桩在设计荷载作用内的荷载-沉降机理,在此基础上,对黄土地区桥梁桩端压浆对桩基承载性能的影响进行深入的对比研究,并对桩端土变形模量提高对桩基沉降产生的影响进行了研究。  相似文献   

11.
武汉西四环汉江特大桥主桥为(77+100+360+100+77)m预应力混凝土梁斜拉桥,主梁为π形结构,两边为单箱双室、中间为纵横梁加桥面板结构形式。主梁0号块宽44m、长22m,采用钢管桩贝雷梁支架现浇施工。支架由底模系统、横梁(贝雷梁)、桩顶分配梁、砂筒、钢管支架组成,支架施工完后采用反力架预压钢管桩,边箱室顶板底模采用透水模板布施工。通过混凝土配合比优化,配制高耐久性、稳定性的C55高性能混凝土,并采用天泵和地泵从两个方向分层浇筑,桥面纵、横坡采用提浆整平机控制。在0号块混凝土强度成长期预张拉横向预应力,纵向预应力待1号和1′号块施工完采用连接器连接构成整束一次性张拉;预应力采用智能张拉系统张拉、智能压浆系统压浆。实践表明,该桥采用该施工技术成功克服了支架不均匀沉降,有效控制了裂纹的产生,保证了主梁0号块的施工质量与施工安全。  相似文献   

12.
大直径钻孔灌注桩桩端后压浆试验研究   总被引:8,自引:0,他引:8  
阐述了桩端后压浆可提高桩基承载力的机理。介绍了苏通大桥一期试桩桩端后压浆施工工艺。通过压浆前后试验测试结果对比,分析了大直径桩端后压浆桩的承载特性,说明桩端后压浆技术的有效性,得出了一些有益的结论,为钻孔灌注桩桩端后压浆的设计、施工提供参考。  相似文献   

13.
海上复合桩钢管打设施工技术   总被引:1,自引:0,他引:1  
张海燕 《桥梁建设》2014,(2):112-117
港珠澳大桥浅水区非通航孔桥采用85m连续组合梁桥形式,全长5 440m,共64孔,每墩均采用6根复合桩钢管,共372根,低墩区与高墩区桩径分别为2.0m和2.2m,连同替打段桩长总长超过60m。为满足复合桩钢管在涌浪较大海域施工精度要求,经比选采用整体式导向架法打设复合桩钢管。首先将导向架运至墩位处初定位,通过导向架调位系统进行二次定位,利用APE400B液压打桩锤插打4根定位桩;再将导向架固定在定位桩上,利用导向架微调装置进行第3次定位后,插打复合桩钢管到设计标高。施工中通过液压系统、导向装置、RTK定位测量及3次定位等技术确保了复合桩钢管的平面位置和倾斜度,复合桩钢管打设施工精度均满足该工程技术规范要求。  相似文献   

14.
本文以港珠澳大桥青州航道桥为例,介绍复合桩从钢管打设、钻孔平台搭建、钻孔、灌注水下混凝土等方面,对外海超长大直径桩基的施工工艺进行阐述。  相似文献   

15.
为研究深厚卵石层后压浆灌注桩的承载性能,以湖北观音寺长江大桥为背景,通过现场自平衡静载试验进行后压浆灌注桩承载性能研究。采用分布式后压浆技术,通过试桩现场试验获取压浆前、后深厚卵石层桩土接触界面桩侧摩阻力τ~桩土相对位移s、桩端阻力qu~桩端位移su关系曲线,揭示后压浆对桩土接触界面剪切力学特性的影响,通过压浆前、后的桩侧、桩端初始刚度变化揭示压浆效应对深厚卵石层桩基承载能力增强的作用机理。结果表明:卵石层灌注桩采用分布式后压浆可以有效提高桩基的极限承载力,减小桩顶沉降;压浆后灌注桩桩侧摩阻力、桩端承载力得到提高,桩侧、桩端初始刚度得到增强,承载性能明显改善;现场实测桩基各承载性能指标约为理论值的1.1倍;压浆后桩基各承载性能指标为压浆前的1.8~2.0倍。  相似文献   

16.
由于建设条件的特殊性,嘉绍跨江大桥70 m跨径水中区引桥采用没有承台构造、墩柱和大直径桩基础直接连接的单桩独柱下部结构方案。该方案主墩墩、梁固结,横桥向两幅桥之间主墩墩顶设置了工字形截面混凝土横系梁;钢护筒全长45 m,底口、顶口标高分别为-35 m、+10m;桩基础直径3.8 m,单桩桩长105~111 m,均按摩擦桩设计,桩基础采用C30海工水下混凝土;主墩采用圆柱形墩,墩顶断面宽8.5 m,圆端直径与墩底断面直径相同,墩柱采用C40海工混凝土。  相似文献   

17.
实际工程中,经常采用桩端注浆的方法,利用高压水泥浆液的渗透、扩散和挤压特性,提高桩周、桩端土的强度,从而提高灌注桩的承载力。然而,桩端注浆对大直径超长桩的作用机理尚需深入研究,该文通过对广东省某高速公路工程中2根大直径超长旋挖桩(一根桩端注浆;另一根未注浆)的单桩竖向抗压静载试验结果对比,对试桩的竖向极限承载力、桩身轴力传递规律以及桩侧阻力发挥特性和桩端阻力发挥特性综合分析研究,发现桩端注浆效果明显,注浆后试桩极限承载力至少提高28%。试验结果表明:桩端注浆后试桩极限桩端阻力至少提高83%,桩端注浆对大直径超长旋挖桩桩侧摩阻力的影响沿桩身可分为3个区段:即显著增强区段、非显著增强区段以及无增强区段。对比采用桩基规范法与公路桥涵规范法计算试桩极限承载力,发现对于大直径超长旋挖桩,考虑尺寸效应的桩基规范法更安全准确。  相似文献   

18.
该文介绍一座大跨下承式拱肋钢管混疑土人行拱桥的设计.高翔东路人行桥采用单跨100.5m下承式单肋钢管混凝土拱桥.两岸均设置梯步和缓坡道,主桥全长104.7m,主拱肋为矢跨比1/6的悬链线拱.主拱肋采用φ1 200×26- 18 mm钢管混凝土结构,管内混凝土采用C50自密实补偿收缩混凝土.拱肋钢管采用无缝钢管或直缝焊接钢管.主梁采用单箱双室钢箱梁,全宽7m,跨中梁高1.0m,梁端高度1.8m.吊杆采用刚性吊杆(GLG460-UU型钢拉杆),强度等级为460 MPa.吊杆两端采用销轴与拱肋、主梁连接.主墩采用直径1.4m的钢筋混凝土圆柱墩,桩基础为嵌岩桩;桩基础采用直径1.5m钻孔灌注桩,桩基础为嵌岩桩.梯步、缓坡道及平台均采用桩基础+钢管墩的形式,桩基础采用摩擦桩.经结构分析验算,人行桥结构的内力、变形、稳定均满足规范要求,人致振动分析表明在正常使用荷载和不利荷载作用下人行舒适性均能满足规范要求.  相似文献   

19.
湘潭湘江二桥全长1830m,主桥为(50m 5×90m 50m)悬浇预应力混凝土单箱单室连续梁, 桥面净宽20m,下部构造为双柱式空心墩。其设计特色是:封闭式桥面,双柱式桥墩,φ3.5m大直径桩基础,变截面斜腹板箱梁等。施工特色是:多点连续顶推新工艺,水下压浆混凝土在围堰工程中的推广应用,填石压浆混凝土空心桩二次浇注接长处理断桩新工艺;预应力分束张拉工艺等。该桥预定1993年9月底建成。  相似文献   

20.
黄挺  龚维明  戴国亮 《公路》2011,(2):217-222
对印尼苏拉马都跨海大桥9根超长钻孔灌注桩采用自平衡法进行了静载荷试验.测试得到了桩端压浆前后的桩基承载力、桩端阻力及桩侧摩阻力.根据压浆前后的试验数据进行分析,压浆后桩极限承载力提高幅度为10.32%~170%,桩端阻力提高幅度为8.46%~207.6%,侧摩阻力提高幅度为8.32%~120%,整桩承载特性得到明显改善...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号