首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为研究玄武岩纤维和粗、细聚丙烯纤维加筋水泥土抗压性能,本研究通过无侧限抗压强度试验,对浸水条件下不同土质、水泥掺量、纤维种类、纤维掺量、纤维长度以及纤维组合方式试件抗压性能进行了研究。结果表明:水泥能够一定程度提高土体无侧限抗压强度,但水泥土试样应力应变曲线峰后下降较快,呈脆性破坏特征;掺入纤维能继续提高水泥土无侧限抗压强度,有效改善水泥土脆性破坏模式并提高水泥土抗开裂性能;玄武岩纤维分散性不良,而粗、细聚丙烯纤维分散性较好,适用于纤维加筋水泥土;纤维掺量和纤维长度对纤维加筋水泥土抗压性能有较大影响,随着纤维掺量的增加,无侧限抗压强度总体呈现先增大后减小规律;对于不同土质和不同纤维种类,纤维长度对纤维加筋水泥土无侧限抗压强度的影响不一。细聚丙烯纤维理想长度和掺量为12 mm和0.8%,粗聚丙烯纤维理想长度和掺量为38 mm和0.8%。相较于单种纤维加筋,粗细聚丙烯纤维混掺加筋对水泥土抗压强度的增强与脆性破坏模式的改善效果更好,粗细混掺聚丙烯纤维加筋水泥土理想组合为38 mm长粗聚丙烯纤维(掺量为0.3%)+12 mm长细聚丙烯纤维(掺量为0.3%)。  相似文献   

2.
在水泥稳定土中掺入不同长度、不同掺量的聚丙烯纤维,制备了聚丙烯纤维水泥稳定土(PFCS),通过击实试验确定最佳含水量及最大干密度,采用抗压强度试验及抗劈裂性能试验,分别研究了聚丙烯纤维的掺入对水泥稳定土的抗压强度及抗劈裂性能的影响。结果表明:掺入5%水泥的PFCS最佳含水率与干密度分别为17.3%、1.749g/cm~3;当水泥与聚丙烯纤维掺量相同时,PFCS的无侧限抗压强度随养护龄期的增加而提高,且纤维长度越长对水泥稳定土基体的裂缝抑制作用越明显;随着纤维掺量及长度的增加,水泥稳定土7d无侧限抗压强度随之增大,抗裂性能显著增强。  相似文献   

3.
为了解偏高岭土对水泥土强度的影响,通过室内无侧限抗压强度试验,对不同偏高岭土掺量、不同龄期条件下的水泥土强度进行了测试。结果表明:当水泥掺量一定时,随着偏高岭土掺量的增加,水泥土抗压强度均有不同程度的增长;当偏高岭土掺量为3%时,水泥土抗压强度增幅达到普通水泥土抗压强度的27%左右。同时,对偏高岭土在水泥土中的作用机理进行了分析。  相似文献   

4.
以粉煤灰和粉土部分替代水泥制备气泡混合轻质土,研究水固比、引气剂掺量、粉土掺量、养护龄期及养护条件对无侧限抗压强度影响和轻质土抗干湿循环性能。结果表明:降低水固比能够增大抗压强度;湿密度由 1 000 kg/m3增大至1 200 kg/m3,28天抗压强度提高了37 %;随着粉土掺量增大,抗压强度降低;提高养护温度可提高早期抗压强度;制备的轻质土抗干湿循环性能较好。  相似文献   

5.
季节性冻土在中国分布广泛,在强烈的冻融循环作用下,路基易出现翻浆冒泥、沉陷和强度弱化等现象。在路基土中掺入粉煤灰和水泥是一种有效的改良措施,为探讨冻融循环条件下水泥土和掺粉煤灰水泥土的强度特性,对水泥土进行冻融循环和无侧限抗压强度试验,研究了水泥掺量、粉煤灰掺量、龄期和冻融循环次数对水泥土无侧限抗压强度的影响。  相似文献   

6.
为研究冻融作用对聚丙烯纤维土力学性能的影响规律,通过正交试验以及极差方差显著性分析,得到了纤维掺量、纤维长度、冻融循环次数3个因素对于聚丙烯纤维土抗剪强度和无侧限抗压强度的影响规律,确定冻融作用下聚丙烯纤维土最佳组合方案为:纤维长度为9 mm、纤维掺量为3‰。最佳组合方案下的纤维土粘聚力较素土有一定的提升,且提升效果随冻融次数的增加更为显著;内摩擦角随冻融次数的增加出现了先增大后减小的现象,在冻融3次以后,掺入最优组合方案的纤维土内摩擦角较素土要小;无侧限抗压强度的提升最为显著,增强效果随着冻融次数的增加变弱。  相似文献   

7.
以内蒙古河套灌区粉质黏土为研究对象,在水泥掺量一定的情况下,将硅粉作为水泥土的外掺剂,单掺硅粉含量从1%~5%进行试样重量对比及无侧限抗压强度试验,研究了硅粉对水泥土重量的影响及对水泥土无侧限抗压强度的变化规律,并且探讨分析了硅粉在水泥固化土中的作用机理,得出一些重要结论,为实际工程的应用提供科学依据。  相似文献   

8.
将碱渣按一定比例与滨海软土拌和,用以稳定软土。通过击实试验制备碱渣土,对不同配比碱渣土进行无侧限抗压强度和水稳定性试验,研究组分掺量、龄期对碱渣土强度和水稳定性的影响,分析碱渣土的无侧限抗压强度特性和机理。研究结果表明:碱渣土的无侧限抗压强度随着水泥掺量的增加而提高,随着碱渣掺量的提高先增加后降低,存在一个峰值;龄期对碱渣土无侧限抗压强度有一定影响,在7~14d龄期时影响较为明显,在14~28d龄期发展平缓;碱渣土的水稳定性发展规律与无侧限抗压强度基本一致。结合试验分析得出,利用碱渣稳定滨海软土时,碱渣掺量为30%左右较为理想。  相似文献   

9.
结合渤海近海口软基处理工程,对水泥改良海相淤泥质软黏土(即水泥土)分别在不同水泥掺量、不同龄期和不同养护条件下进行室内无侧限抗压强度试验。研究结果表明:水泥土无侧限抗压强度随着养护龄期和水泥掺入比的增加而增加;无侧限抗压强度增长速率随着养护龄期的增大而减小;标准养护条件下的水泥土无侧限抗压强度略低于自然养护条件的强度。  相似文献   

10.
庞文台  申向东 《公路》2012,(9):30-32
抗冻性差是水泥土的一个最重要的缺陷,长期以来如何将水泥土应用于北方寒区一直是工程实践面临的一个重大课题。通过室内的水泥土无侧限抗压强度试验,探讨了水泥掺量和冻融循环对水泥土无侧限抗压强度的影响规律。试验研究表明:在冻融循环条件下,水泥土的无侧限抗压强度呈现近似于直线增长的趋势。当水泥掺量达到25%时,经过冻融循环后的水泥土的无侧限抗压强度损失率也达到了48.04%,不能满足工程上冻融循环后强度衰减小于25%的要求。所以,在实际工程中,必须要采取其他的措施来减少水泥土的冻融损失。同时对冻融前后水泥土的无侧限抗压强度按照线性进行拟合,拟合的效果较好。  相似文献   

11.
通过室内重塑土试样无侧限抗压强度试验,探讨在不同水泥标号、不同水泥掺量、不同龄期、不同软土条件下水泥土无侧限抗压强度发展规律。试验结果表明:龄期对水泥土无侧限抗压强度的提高比水泥掺量的影响更明显;425普通硅酸盐水泥对软土无侧限抗压强度的改善效果由好到差依次为粘土、淤泥质粘土、淤泥。325矿渣硅酸盐水泥对于淤泥土地基处理效果明显好于425普通硅酸盐水泥。以武汉某道路工程为依托,通过室内正交试验,考虑水泥土无侧限抗压强度的相关因素,找出影响粘土、淤泥质粘土、淤泥强度的主要影响因素,以便在工程中尽可能获得最好的软土加固效果。  相似文献   

12.
为了探究纤维加筋固化土技术应用于应急机场的可行性,通过无侧限抗压强度试验,探究了不同掺量和龄期的水泥、固化剂以及纤维复合固化黄土的强度特性。结果表明:固化剂与纤维可以提高黄土无侧限抗压强度,其中水泥固化效果最优,且最优掺量为8%,随着纤维和砂掺量的增加,加筋固化土的强度先增大后又减小,纤维掺量为0.30%和0.45%时固化黄土强度较高,砂的最佳掺量在4%左右。进行简易机场布设时,建议机场道面工程使用12 mm改性聚丙烯纤维掺量0.45%,固化剂选用P.O 32.5R硅酸盐水泥掺量8%,砂掺量低于4%的复合固化土。  相似文献   

13.
为了研究粉煤灰掺量对水泥土强度的影响,对4组不同掺量的粉煤灰进行了无侧限抗压强度试验,并在水泥掺量和粉煤灰掺量均为9%的试样中掺入不同粒径的天然鹅卵石和破碎花岗岩,分析掺粉煤灰水泥土与砾石的联合作用。结果表明:随着粉煤灰掺量增大,无侧限抗压强度增大;当粉煤灰掺量高于水泥掺量,强度增长不明显;掺砾试样抗压强度大于未掺砾试样强度,且掺入天然鹅卵石试样比掺人工破碎灰岩强度低。  相似文献   

14.
为了研究水泥改性膨胀土在干湿循环下的工程渗透特性,设计水泥改性膨胀土的配合比,采取正交设计试验方法,通过图像分析软件PACS、无侧限抗压强度试验、室内渗透试验研究在干湿循环条件下水泥改性膨胀土的裂隙开展情况、强度衰减特性、水泥改性膨胀土渗透性能的变化规律。结果表明:土体渗透特性和强度受干湿循环次数的影响程度较大;在干湿循环条件下水泥改性的膨胀土含水率保持更稳定,抗裂率、强度、渗透率均得到明显的改善;低碱水泥土的裂隙率、强度衰减率、渗透率均大于普通水泥土。  相似文献   

15.
《公路》2017,(2)
为了研究干湿循环条件下轻量土的水稳定性,通过密度试验、无侧限抗压强度试验和质量损失率试验,研究了轻量土的物理特性和力学性能。研究发现,轻量土的密度、强度和质量在长期干湿循环作用下具有很高的稳定性,其中强度还出现了一定程度的增长。这是由于轻量土中的水泥发生水解水化反应及轻量土各组分之间的相互作用,使土体的结构性逐渐增强,最终形成一个致密而稳定的网络状胶结结构,来抵抗干湿循环环境产生的侵蚀作用。在经受30次干湿循环作用后,密度的绝对变化量为0.02~0.06g/cm3,相对变化量为0.93%~4.47%。轻量土的密度在干湿循环作用下能够保持稳定,泡沫掺量对轻量土密度的影响较为显著。强度的绝对增长量为276.79~891.64kPa,相对增长量为71.46%~114.15%。其中,水泥掺量和含水量变化时,强度随干湿循环次数增加而变化比较敏感。质量损失率的变化范围大致在-1.00%~1.00%之间;随着干湿循环时间的推移,质量能够趋于稳定。即:轻量土在干湿循环作用下具有良好的水稳定性。  相似文献   

16.
《公路》2015,(1)
通过大量室内试验,研究了聚酯纤维及聚丙烯纤维对水泥稳定碎石的无侧限抗压强度、劈裂强度和抗压回弹模量等力学性能的影响。结果表明:聚酯纤维和聚丙烯纤维都可以大幅度地提高水泥稳定碎石的无侧限抗压强度和劈裂强度,降低抗压回弹模量;给出了纤维最佳质量掺量,聚酯纤维约为0.07%,聚丙烯纤维约为0.05%;相同龄期、相同纤维掺量的情况下,聚酯纤维水泥稳定碎石比聚丙烯纤维水泥稳定碎石的强度高、回弹模量低。同时,根据试验结果分析,得出了聚酯纤维、聚丙烯纤维掺量与水泥稳定碎石各力学性能指标的回归关系式。  相似文献   

17.
为提高水泥石灰土的力学性质和抗收缩性能,研究了TG土壤固化剂、聚丙烯纤维、玄武岩纤维对水泥石灰土的抗压强度、劈裂强度、抗压回弹模量及收缩性的影响。试验结果表明:在试验掺量范围内,随TG固化剂掺量的增加水泥石灰土的抗压强度增大,而单掺聚丙烯纤维或玄武岩纤维能明显增强水泥石灰土的劈裂强度。TG固化剂与纤维混合添加对水泥石灰土力学和收缩性能的提高幅度高于添加一种材料,尤其是TG固化剂与玄武岩纤维的混掺效果更佳。  相似文献   

18.
在最佳粉煤灰掺量20%条件下,聚丙烯纤维长度分别取6、12、24mm,以0.25%的增量从零增至1.5%掺加到粉煤灰稳定膨胀土中,利用标准击实试验、无侧限抗压强度、加州承载比和膨胀压力试验评价纤维增强粉煤灰稳定膨胀土路基混合料的特性,根据试验结果确定聚丙烯纤维的最佳长度和最佳掺量分别为12mm、1.0%,并验证了在最佳粉煤灰掺量和最佳纤维掺量及长度下的路基趋于最佳稳定状态。  相似文献   

19.
采用无侧限抗压强度试验、击实试验、抗疲劳性能试验和水稳定性试验,对土凝岩固化黏性土与水泥固化黏性土的力学及耐久性能进行对比,探究其性能变化规律.结果表明:随土体固化剂掺量增加,固化稳定黏性土7天无侧限抗压强度增大,其最佳含水率也随之增大;水泥固化稳定黏性土的早期水稳定性系数低于土凝岩固化黏性土,后期水稳定性系数较为接近...  相似文献   

20.
水泥砂浆固化土的工程特性研究   总被引:2,自引:0,他引:2  
通过室内试验系统地对水泥砂浆固化土的工程特性进行研究,分析水泥砂浆固化土压缩特性、无侧限抗压强度、剪切强度、屈服应力等力学特性,以及随掺砂量、龄期、水泥掺入比、含水率以及砂料粒径等因素的变化规律。结果表明:掺入砂后可明显改善水泥土的抗压缩性能,水泥砂浆固化土强度比相应的水泥土高约20%,无侧限抗压强度与相应的屈服应力呈线性增长关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号