首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
基于流体力学、空气动力学和工程热力学等理论,建立了空气弹簧节流孔非线性力学模型1和模型2,以高速动车组用空气弹簧为例进行了不同节流孔直径下的动态特性仿真计算。利用空气弹簧垂向振动试验台进行了不同工况下的空气弹簧力学特性试验,对比仿真结果与试验结果,发现模型1更能反映实际空气弹簧的幅变特性和频变特性,该模型在不同节流孔直径下的空气弹簧特性与试验结果吻合得较好。  相似文献   

2.
研究空气弹簧键合图建模方法,建立空气弹簧的功率键合图模型,使用20-sim软件进行动态仿真,得到系统压力和位移的动态响应曲线,研究不同负载和节流孔直径对空气弹簧性能的影响规律;通过建立系统的Simulink模型,进行对比仿真分析,验证空气弹簧键合图模型的正确性与仿真结果的可靠性.研究工作为空气弹簧的动力学建模及仿真提供...  相似文献   

3.
为验证所建立TPL-ASN空气弹簧模型的准确性,并研究激励幅值对空气弹簧动态特性的影响规律。采用基于TPL-ASN模型的自编空气弹簧动态特性仿真软件(ASDS),建立某高速动车组空气弹簧试验台模型,分析不同激励幅值下空气弹簧的动态特性,并将仿真计算的动刚度、阻尼比、阻尼和传递比与试验结果对比。结果表明,TPL-ASN空气弹簧模型能准确反映空气弹簧的非线性幅变特性;在中低频范围内,空气弹簧动刚度、阻尼比和阻尼的幅变特性较为明显,而在低频范围内激励幅值对空气弹簧动态特性基本没有影响;传递比的幅变特性在共振频率附近尤为明显,在中高频范围内较为复杂,在低频范围内影响较小。  相似文献   

4.
基于热力学、流体力学和空气动力学理论,建立包括橡胶气囊、附加空气室、节流孔、差压阀和高度调整阀的空气弹簧系统气动力学微分方程组.在此基础上,基于AMESim平台建立轨道车辆的空气弹簧系统气动力学仿真模型,并以某动车组为例进行空气弹簧系统的静、动刚度仿真计算.将仿真计算结果与实测结果对比,验证了该模型能够很好反映实际空气弹簧的静态和动态特性.仿真计算结果表明:该模型解决了常规车辆动力学模型不能模拟空气弹簧刚度变化和高度调整阀在有些工况下会打开的问题,从而提高了车辆动力学仿真的计算精度.  相似文献   

5.
当铁道车辆上的空气弹簧趋于平直时,轮载会因轨道不平顺而降低.为了检验铁道车辆在空气弹簧放气情况下的运行安全性,进行了运行试验,得出轮载、横向力、施加于空气弹簧的力和车轮爬升量等各种数据.此外,考虑到空气弹簧放气而制作了铁道车辆的数值仿真模型,通过与这些试验结果的比较,确认了其有效性.  相似文献   

6.
针对一种无摇枕悬浮架的新型高速磁浮车辆系统,建立了包含非线性空气弹簧模型、电磁悬浮控制模型的磁浮车辆动力学模型,仿真分析了车辆通过半径530m竖曲线时的动力学响应,并与采用线性等效空气弹簧模型的计算结果进行了对比分析。结果表明,采用两种空气弹簧模型的磁浮车辆车体加速度、电磁铁加速度和悬浮间隙变化量等响应差别不大,均能满足车辆动力学预测要求,但空气弹簧伸缩量计算值有明显差别,两者误差达到29%;采用非线性空气弹簧的磁浮车辆动力学响应结果更符合工程实际,可为高速磁浮车辆空气弹簧结构设计与参数选取提供应用参考。  相似文献   

7.
一种轨道车辆用带箍结构空气弹簧的非线性有限元分析   总被引:1,自引:0,他引:1  
运用了ABAQUS有限元软件建立带箍结构空气弹簧的静态有限元模型。并利用有限元模型对影响此类结构空气弹簧垂向和横向性能的因素进行了分析。分析与试验结果对比来看,是基本一致的。试验结果表明,所运用的计算方法是行之有效的,可以应用于类似空气弹簧的性能分析,并将为新型空气弹簧的设计、研制开发提供了一定的理论计算依据。  相似文献   

8.
空气弹簧垂向减振力非线性模型研究   总被引:3,自引:0,他引:3  
对空气弹簧进行了性能确认试验,建立了空气弹簧垂向作用力的非线性模型,该模型可以广泛应用于空气弹簧受压面积、容积变化率、动静刚度等方面的研究。  相似文献   

9.
在分析中低速磁浮车辆结构的基础上,利用SIMPACK多体动力学仿真软件建立了参数化模型。选取空气弹簧及悬浮磁铁不设横向止挡与设置横向止挡2种工况,分析空气弹簧水平位移、空气弹簧水平受力、悬浮磁铁横向偏移量以及迫导向纵向拉杆受力等评价指标,论证中低速磁浮车辆S形曲线通过可行性。计算结果表明,目前的车辆参数及结构状态下车辆不可以通过S形曲线,需要进行参数优化或结构改进。文章提出了参数优化及结构改进的方向。  相似文献   

10.
建立了LV4型、LV7型高度调整阀的空气弹簧模型,针对车辆动态曲线性能进行了仿真分析,并与常规的等效线性空气弹簧模型情况下的车辆响应进行了对比。  相似文献   

11.
为研究不同模型和不同空气弹簧物理参数下车辆振动特性,基于热力模型和ADAMS空气弹簧非线性模型建立空气弹簧悬挂系统控制模型,并利用多体动力学仿真软件SIMPACK与MATLAB/SIMULINK联合仿真平台建立包括空气弹簧系统的整车多体动力学模型。研究结果表明:热力模型较ADAMS模型更能准确模拟空气弹簧非线性动态特性;车辆低速运行时节流孔直径越小越有利于改善车辆垂向运行平稳性;车辆高速运行时节流孔直径太大或者太小都不利于改善车辆垂向运行平稳性;附加空气室体积越大越有利于改善车辆垂向平稳性,但是增大到一定程度继续增大对车辆垂向平稳性改善不是很明显。  相似文献   

12.
结合整车的动力学仿真,建立了空气弹簧漏气过程的力学模型,模拟了空气弹簧突然漏气工况下车辆动力学性能的变化,分析了空气弹簧漏气条件下车辆的稳定性、直线平稳性以及曲线通过安全性。计算结果表明,空气弹簧突然漏气导致二系悬挂刚度剧变,引起轮轨垂向力先减小后增大,轮重减载率、脱轨系数等增大直至超限,但对轮轨横向力影响不大。  相似文献   

13.
通过建立空气弹簧失气过程的力学模型,结合整车的动力学仿真,模拟了高速列车在空气弹簧突然失气工况下的动力学性能变化。计算结果表明,空气弹簧突然失气导致二系悬挂刚度衰变,引起轮轨垂向力变小、轮重减载率增大甚至超限,对轮轨横向力和脱轨系数等也有一定的影响。  相似文献   

14.
青藏车AM96型转向架用空气弹簧限界分析   总被引:1,自引:0,他引:1  
利用MARC软件建立了空气弹簧计算模型,对青藏车AM96型转向架用空气弹簧在变形范围内进行了限界校核,形成了动态包络图,试制出样机后进行了限界试验,并通过装车运用进行了验证.  相似文献   

15.
铁道车辆空气弹簧-可变节流阀垂向动态特性的研究   总被引:3,自引:0,他引:3  
采用有限元与试验结合的方法,准确地描述了空气弹簧变形和接触特性,应用空气动力学、工程热力学和传热学理论建立了空气弹簧垂向动态特性分析模型。经试验验证了模型和方法的正确性。详细分析和总结了激扰频率、幅值、节流孔面积、节流阀弹簧刚度、附加气室容积和内压对空气弹簧动态特性的影响和规律。  相似文献   

16.
基于热力学和流体力学理论相关数学-物理方程分别建立了空气弹簧本体-固定节流孔-附加气室模型和空气弹簧本体-连接管道-附加气室模型,采用Matlab/Simulink仿真软件,分析了连接管道长度、节流孔直径及附加气室容积对空气弹簧动态特性的影响。仿真结果表明:当采用较长管路连接时应考虑管道内空气质量的惯性对空气弹簧动态特性的影响,短管可等效为固定节流孔连接;空气弹簧垂向动态刚度在低频和高频激励下分别趋于常值;固定节流孔存在低频开口过大,高频开口过小的缺陷;固定节流孔直径与附加气室容积对空气弹簧系统的阻尼特性有较大影响。  相似文献   

17.
结合车辆系统动力学理论,通过SIMPACK软件建立了包含空气弹簧特性的动力学模型,分析了空气弹簧失效后车辆系统的稳定性以及空气弹簧失效对地铁车辆动力学性能的影响,并提出了相应的建议。  相似文献   

18.
对一种双层沙漏结构辅助弹簧的空气弹簧进行了研究,通过对产品进行有限元理论计算、产品试制、产品试验证明,双层沙漏辅助弹簧的空气弹簧在充气状态下能够实现较强的变形能力和较低的垂、横向特性;在泄气状态时,双层沙漏弹簧也能提供较低的垂向刚度,提高了无气运营时轨道车辆的运行安全性。  相似文献   

19.
针对城市轨道交通车辆空气弹簧在使用过程中其理论寿命与实际检修周期存在差异,提出了一种以车辆实际运用状态为背景,基于多体动力学、非线性有限元分析和虚拟疲劳寿命联合仿真的空气弹簧可靠性评价方法。以某型城市轨道交通车辆为例,通过该方法计算得出的空气弹簧的失效结果与现场实测的真实损伤情况相吻合,证实了该方法的科学性。使用该方法对该型空气弹簧在8年理论寿命至10年大修期间的可靠性进行了研究。结果表明,在此期间空气弹簧胶囊的失效率增加0.73%,锥形应急簧的失效率增加1.28%。由此,可以推断该时间段内空气弹簧满足可靠性的使用要求。  相似文献   

20.
电力机车在高寒地区运行时,会出现车载电缆柔性终端炸裂故障。为了研究击穿过程并探究击穿机理,首先在实验室内通过搭建低温实验平台模拟还原了电缆终端低温运行的实际工况,进而实施了局部放电及低温耐压试验。试验结果表明,低温下电缆终端发生局部放电,并在耐压试验中发生击穿,与实际情况相符。通过解剖电缆终端发现,应力管内部有明显的放电通道,外半导体层边缘及应力管末端有大范围烧蚀痕迹,击穿点位于应力管末端。在此基础上本文建立了电缆终端的三维立体模型,并基于有限元仿真软件进行仿真分析计算,仿真结果表明电缆终端存在大范围烧蚀痕迹位置,电场畸变同样严重,与试验结果吻合。最后本文探讨了放电通道延伸与击穿过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号