首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
《公路》2017,(11)
针对隧道中先浇筑主洞衬砌结构后进行横洞开挖的施工工序中横洞施工对主洞衬砌结构形变破坏的影响,以某软岩隧道为工程依托,通过隧道衬砌应力监测、初支结构形变监测以及横洞施工时主洞衬砌结构形变破坏的监测,对深埋软岩隧道横洞施工对主洞衬砌结构形变破坏影响进行了研究与分析。研究表明,隧道交叉段围岩形变量较大,围岩形变速率较大,最大水平收敛位移达到537mm。最大拱顶下沉值达到346.1mm,围岩形变速率平均值达到9.93mm/d;依托工程隧道衬砌为主要受力结构,受力随着时间呈逐渐增大趋势。局部位置处形成应力集中区,应力值达到1.13 MPa和1.03 MPa。衬砌混凝土在左拱脚与右拱腰位置处呈现受压状态,最大压应力值为0.889 MPa。拱顶呈受拉状态,最大拉应力值为6.45 MPa。深埋软岩隧道中的横洞施工对主洞衬砌结构的形变破损有着较为严重的影响,影响范围达到140m。在此软岩隧道中不宜采用先浇筑主洞衬砌结构后对横洞进行爆破开挖的施工工法。  相似文献   

2.
西安地铁侧坡出入段线上跨既有隧道施工影响分析   总被引:1,自引:0,他引:1  
刘淼 《隧道建设》2016,36(7):826-831
地铁近接施工安全影响是轨道交通建设所面临的重要问题,相关研究与分析对于现场施工及既有结构安全具有重要意义。以西安地铁6号线侧坡出入段线明挖上跨既有区间隧道为背景,通过对出入段线分块、分层开挖以及结构回填过程的数值模拟,得出明挖施工卸载再加载过程对下卧隧道的影响程度。计算表明,周边地层受明挖施工卸载再加载效应影响较为明显,总体变形表现为隆起抬升,最大隆起量出现在基坑底部,约为48.15 mm;下卧隧道受出入段线施工影响的最大隆起量为10.86 mm,结构差异变形量为0.008 9%,出现在右线隧道被上跨部分底部;隧道管片最大拉应力为2.13 MPa,最大压应力为4.92 MPa。隧道变形量满足结构安全要求,隧道结构应力远小于其设计强度,出入段线施工对下卧隧道影响较小。  相似文献   

3.
结合某隧道2#通风竖井施工项目,采用数值模拟的方法,分析了竖井及风道的施工对围岩衬砌稳定性的影响。研究结果表明:竖井开挖初期,衬砌压应力、壁座拉应力和位移量均随着竖井的开挖逐步增大,最大值分别为8.1 MPa、1.03 MPa和2.62 mm。开挖到第五步和第六步时对衬砌的应力和位移影响最为不利,应采取相应的保护措施。风道开挖后拱底上抬、拱顶下沉,拱底衬砌最大位移量为3.2 mm,临近竖井部位衬砌拉应力值达到3.76 MPa,可能对初期衬砌造成局部破坏。竖井和风道连接部位衬砌和围岩均出现拉应力集中,最大拉应力值分别达到3.8 MPa和1.6 MPa,围岩最大上抬位移为2.66 mm,竖井和风道连接部位出现局部破损,在实际工程的施工中需予以加固。  相似文献   

4.
主要对平底隧道和仰拱隧道二者的围岩受力和隧道周围位移进行对比分析,得到以下结论:开挖过程中两种隧道模型最大压应力值存在差别,且上台阶开挖要比下台阶开挖时最大压应力值要大;开挖过程中仰拱隧道的最大拉应力一直略小于平底隧道,说明施加仰拱对围岩整体受力较好;随着隧道开挖步的进行,两种隧道模型均呈现出拱顶沉降和拱底隆起位移增长的趋势,且仰拱隧道拱顶沉降值一直略大于平底隧道,而仰拱隧道拱底隆起值一直略小于平底隧道;两种隧道模型上拱墙竖向沉降基本一致,而仰拱隧道底部隆起位移均小于平底隧道,且仰拱隧道隆起位移最大值要比平底隧道小6. 78%,这与仰拱隧道底部围岩和衬砌的"拱作用"有关。实际工程中应综合考虑各方面进行方案选取。  相似文献   

5.
王小雨 《路基工程》2024,(1):161-167
基于某供水专用软岩隧道,采用正交试验法对其围岩稳定性影响因素进行敏感度分析,确定影响拱顶沉降、仰拱隆起和水平位移的主要因素,分析各因素对软岩隧道围岩稳定性的影响。结果表明:提高支护结构混凝土等级和厚度可减小拱顶沉降量,支护施工距离的增加会导致拱顶沉降量、仰拱隆起量逐渐增加,采用全断面法开挖可使拱顶沉降和仰拱隆起最小化;混凝土等级是影响水平位移结果的最显著因素,支护施工距离和开挖方案的影响次之,混凝土厚度是影响水平位移结果的较弱因素。提出优化施工方案,建模分析并通过现场监测进行验证。  相似文献   

6.
王中平 《隧道建设》2014,34(Z1):77-81
依托连霍高速公路扩建工程通过郑西高铁阌乡隧道上方这一典型案例,采用FLAC3D有限差分程序对施工过程进行三维仿真分析。从横断面、纵剖面的变形两个方面对高速铁路隧道安全状态进行了研究。从纵剖面来看,仰拱位移普遍小于拱顶位移,且受地形和隧道与开挖区域的相对位置影响,最大位移发生在50 m位置处的拱顶,量值为6.3 mm,每10 m的最大差异沉降为0.97 mm,小于高速铁路轨道变形要求;从横断面来看,隧道结构由于上部开挖导致卸荷效应,整体呈现隆起趋势,其位移方向趋向于开挖区域。现场施工和监测表明通过采用竖向分层、纵向分段的开挖方式,阌乡隧道的结构变形量得到有效控制,保证了扩建工程的施工安全与高速铁路隧道的运营安全。  相似文献   

7.
为了防止隧道洞口仰坡发生大规模滑坡地质灾害,针对莲花山隧道进口建筑弃渣回填的天然冲沟区段,提出了在左右线隧道中夹岩打设钻孔灌注桩的加固方案,建立了平面应变弹塑性模型对比分析无降水条件下加设钢筋混凝土支护桩前后隧道拱顶和地表位移情况,并在施工过程中监测左线隧道进口仰坡沉降进行了验证。数值计算结果表明,未采用支护桩措施时,右线隧道(后行、浅埋侧)的拱顶水平位移明显大于左线隧道,右线隧道拱顶水平位移最大值为61.2 mm,地表测点水平位移最大值为59.3 mm,沉降最大值为54.9 mm;采用支护桩措施后,左线和右线隧道的拱顶沉降变化不大(最大变化量约0.9 mm),右线隧道拱顶水平位移最大值减小为24.9 mm,地表测点水平位移最大值为1.7 mm,沉降最大值为5.3 mm。现场监测结果表明,左线隧道进口仰坡变形在左线隧道施工后30~50 d趋于稳定,受右线隧道进口施工影响很小;左线隧道进口仰坡沉降量最大为10.2 mm,洞内初期支护与二次衬砌结构均未出现病害现象。经综合分析认为,该隧道加固技术对控制隧道变形、预防滑坡灾害的效果较好,可为其他类似工程设计提供参考与借鉴。  相似文献   

8.
樊占东 《公路》2022,(6):390-394
针对深埋软岩隧道在施工期间易发生拱顶失稳进而引发围岩大变形问题,以上加山隧道为依托工程,采用FLAC 3D数值模拟技术,主要对比分析了环形开挖留核心土法、上下台阶挖掘法和全截面挖掘法等3种施工方式下的隧道拱顶沉降变形规律、拱底隆起变形规律、地表沉降变形规律、应力场分布规律,阐明了3种开挖方式对深埋软岩隧道围岩稳定性影响。研究结果表明:洞顶沉降主要发生在距离隧道左右两侧大约0.5倍洞径处,地表沉降主要发生在距隧道轴线0~35 m范围内。3种不同开挖方式主要影响了隧道拱顶沉降与拱底隆起变形程度,其中环形开挖留核心土法>上下台阶挖掘法>全截面挖掘法。结合地质雷达检测与现场监测结果表明,采用环形开挖留核心土法施工相对比其他两种开挖方式可有效控制深埋软岩隧道拱顶下沉变形与拱底隆起变形。  相似文献   

9.
结合某大跨度城市交通隧道建设,通过二维弹塑性有限元数值模拟,对大跨度隧道施工中采用单侧壁导坑法时,导坑断面形状及大小对隧道地表沉降、拱顶沉降、仰拱隆起及支护受力的影响进行了研究,为隧道设计和施工提供了科学依据。  相似文献   

10.
地铁盾构隧道下穿地道桥施工过程中,对地道桥、地面、隧道沉降控制是确保施工安全的关键。该文依托长沙市地铁1号线黄兴广场站~南门口站区间盾构隧道下穿人民路地道桥工程,采用FLAC3D构建三维数值模型,探讨了盾构下穿地道桥施工过程中地表、地道桥及隧道的变形规律。结果表明:地道桥呈整体向下沉降趋势,隧道双洞贯通后,最大沉降值达到5.26 mm;隧道拱顶和拱底出现一定程度的沉降和隆起,最大变形量分别为6.24、8.65mm。最后结合工程实践提出了盾构下穿地道桥的施工控制对策。  相似文献   

11.
杨永斌  王庆  王星  黄帅 《路基工程》2023,(4):137-142
针对浅埋软弱围岩隧道开挖施工的沉降变形问题,以翁多隧道为依托,结合现场监测数据研究了“三台阶+微桩锁脚”施工技术下隧道初期支护结构的受力及变形特征。结果表明:两种支护结构下随着施工开挖的不断推进,围岩和钢拱架应力变化规律相近,先急剧增加并达到峰值,然后呈缓慢下降趋势,并逐步趋于平缓;累计沉降量则呈缓慢增大趋势。隧道拱顶位置处应力最大,风险最高,常规锁脚锚杆支护拱顶处围岩压力、钢拱架应力分别为0.55、74.10 MPa,累计沉降量最大值为6.70 cm,微锁桩支护时围岩、钢拱架峰值应力分别增加0.55、23.50 MPa,累计沉降量减小了3.96 cm。可见,微型桩技术方案可有效改良浅埋软弱围岩隧道结构的变形与沉降值,控制隧道变形,避免隧道因大变形导致侵限换拱,降低了施工安全风险,具有一定的应用前景。  相似文献   

12.
对山岭隧道穿越大型溶洞综合处治技术进行有限元模拟,通过施工阶段模拟、以及建成后,落石冲击荷载的静力模拟,得出了山岭隧道穿越大型溶洞综合处治技术的相关结论。结果表明:隧道开挖后进口段隧道拱顶沉降最大值为39. 4mm,地表沉降最大值为13. 4mm,隧道在进口段刚开挖时应加强支护及监控量测。沿隧道开挖方向承台发生不均匀沉降,前方承台沉降最大值为1. 3mm,而后方的承台大部分向上隆起,隆起最大值为0. 62mm,工后可能导致桥板发生左低右高的倾斜。通过明洞护拱的影响的数值模拟可以得知,冲击荷载由600kN/m~2增加到2400kN/m~2过程中产生的竖向拉应力可能已经造成了护拱的破坏。根据冲击压力计算公式,增加缓冲回填土计算厚度,有利于增加结构的安全性。通过有限元模拟所得规律,对处治措施的机理可以做进一步了解,对处治措施的改进可以提供相应的帮助。对施工安全有着较大的意义。  相似文献   

13.
以重庆轨道交通环线单洞双线区间隧道某标段为例,采用有限元软件Midas/GTS进行数值分析,研究回填土隧道围岩应力应变随施工过程的变化规律,并探讨了应力释放率以及注浆不同尺寸对围岩稳定性的影响。研究表明:大跨径回填土隧道开挖完毕,拱顶沉降最大值出现在隧道开挖起始端,水平净空收敛最大值出现在开挖末端;隧道应力释放率增大,拱顶沉降和水平净空收敛增幅剧烈;管棚注浆起始厚度为0.4m时,隧道拱顶沉降、水平净空收敛值、路面沉降分别减少36.5%、47.0%和18.6%,注浆厚度由0.4m增加到1.6m,隧道拱顶沉降和水平净空收敛值分别减少14.2%和14%。  相似文献   

14.
王涵  高永涛  李建旺 《公路》2021,(2):316-323
以2022年北京冬季奥林匹克运动会重大交通保障项目延(庆)-崇(礼)高速公路第06标段玉渡山隧道为工程背景,采用FLAC 3D程序研究了隧道穿越F115断层破碎带CD法施工方案,分析拱顶沉降、水平收敛与塑性区范围,依据分析结果并结合现场监测数据,给出了锚-网-喷-钢拱架联合支护方案。研究结果表明:(1)施作支护方案后,隧道穿越断层破碎带段累积拱顶沉降为16.2mm,累积水平收敛量为22.3mm,而现场监测得到的累积拱顶沉降与累积水平收敛分别为19.3mm和26.5mm,二者较为吻合,故在后续隧道穿越断层破碎带CD法施工过程中以数值计算的方式预估隧道累积拱顶沉降、累积水平收敛等相关参数;(2)若数值计算结果显示隧道最大累积拱顶沉降量、最大累积水平收敛量较大、塑性区较为发育时,则隧道存在较大塌方风险;(3)在施作支护方案后,穿越断层破碎带段隧道的累积拱顶沉降量由51.5mm减小至19.3mm,累积水平收敛量由62.7mm减小至26.5mm,有了明显降低,且应力集中得以改善,塑性区范围亦大幅减小,隧道得以顺利穿越断层破碎带。  相似文献   

15.
对在建工程六盘水隧道施工工艺进行研究,从理论与实际两个角度出发,结合有限元计算,验算了开挖过程中隧道的受力情况以及变形沉降情况,对施工路段进行现场沉降量的监测,及时将监测结果反馈给施工方。最终得到理论计算值的拱顶沉降量为15.31 mm,实际监测值拱顶沉降量为14.20 mm;对开挖过程中的围岩内力进行计算,可知最大弯矩值为4.92 k N·m,产生于洞口拱脚处,最大轴力值为172.4 k N,产生于洞口拱腰处,与监测结果基本符合,结果表明当前施工工艺具备较高的安全系数。  相似文献   

16.
针对隧道工程中新建隧道小角度斜下穿既有隧道工程中亟待解决的难题,以西安地铁1号线二期张家村-后卫寨区间左线盾构下穿既有1号线出入段线为工程依托,通过现场调研、数值模拟和现场监测等方法进行施工参数对轨道既有隧道和轨道高差的沉降规律(重点进行对轨道高差的控制)研究。选取土仓压力、注浆压力、注浆量等施工参数,其中注浆量用注浆厚度间接体现,构建三维数值计算模型,并对结果进行分析,依据分析结果给出合理的盾构施工参数建议值,在此基础上进行现场监测,验证给出的施工参数建议值对轨道高差的控制效果。研究结果表明:随着土仓压力、注浆压力的增大,既有隧道的沉降和轨道高差不断减小,当其土仓压力超过0.10 MPa、注浆压力超过0.22 MPa时,既有隧道沉降和轨道高差控制效果不再明显提高;既有隧道沉降和轨道高差随着注浆厚度的增大而减小,其与注浆厚度均近似呈线性关系,因此适当增大注浆范围是控制既有隧道沉降和轨道高差的有效方法;确定的施工参数建议值为0.10 MPa(土仓压力)+0.22 MPa(注浆压力)+0.23 m(注浆厚度);通过现场监测,既有地铁隧道道床上C,B,G,F四条测线上最大沉降量均在6 mm左右(小于20 mm),最大轨道高差为1.2 mm(小于4 mm),均小于规范所要求的控制值,表明以上施工参数建议值对于既有隧道沉降和轨道高差起到了很好控制效果。  相似文献   

17.
针对隧道工程中新建隧道小角度斜下穿既有隧道工程中亟待解决的难题,以西安地铁1号线二期张家村-后卫寨区间左线盾构下穿既有1号线出入段线为工程依托,通过现场调研、数值模拟和现场监测等方法进行施工参数对轨道既有隧道和轨道高差的沉降规律(重点进行对轨道高差的控制)研究。选取土仓压力、注浆压力、注浆量等施工参数,其中注浆量用注浆厚度间接体现,构建三维数值计算模型,并对结果进行分析,依据分析结果给出合理的盾构施工参数建议值,在此基础上进行现场监测,验证给出的施工参数建议值对轨道高差的控制效果。研究结果表明:随着土仓压力、注浆压力的增大,既有隧道的沉降和轨道高差不断减小,当其土仓压力超过0.10 MPa、注浆压力超过0.22 MPa时,既有隧道沉降和轨道高差控制效果不再明显提高;既有隧道沉降和轨道高差随着注浆厚度的增大而减小,其与注浆厚度均近似呈线性关系,因此适当增大注浆范围是控制既有隧道沉降和轨道高差的有效方法;确定的施工参数建议值为0.10 MPa(土仓压力)+0.22 MPa(注浆压力)+0.23 m(注浆厚度);通过现场监测,既有地铁隧道道床上C,B,G,F四条测线上最大沉降量均在6 mm左右(小于20 mm),最大轨道高差为1.2 mm(小于4 mm),均小于规范所要求的控制值,表明以上施工参数建议值对于既有隧道沉降和轨道高差起到了很好控制效果。  相似文献   

18.
王鹏  杜文涛  汤明  付责庆  孙强 《中外公路》2019,39(2):215-217
针对复杂岩溶区小净距隧道洞口塌方问题,以贵阳七冲村一号特大断面隧道为工程背景,通过对其洞口塌方原因进行全面分析,确定隧道拱侧存在的充填溶腔为该事故发生的主要原因。结合隧道地质条件和施工方法,采取了"先护后挖"的塌方处治方案。通过对塌方段断面进行监测,拱顶最大累计沉降43mm、水平累计收敛6mm、钢架结构内外边缘最大应力171MPa,研究综合表明所采取的塌方处治措施是可行的。  相似文献   

19.
魏纲  姚王晶  许斌  石长江  傅翼  王哲 《隧道建设》2018,38(7):1123-1130
软土地区的浅埋隧道由于土层软弱,易产生较大变形和坍塌。为解决隧道开挖时的围岩变形及开挖工法选择问题,依托紫之隧道第1标段暗挖段工程,对洞内拱顶沉降、拱腰收敛和仰拱隆起进行实测,对实测数据的规律与影响因素进行分析。研究结果表明: 1)CRD工法在淤泥质软土中与四台阶法在强风化泥质粉砂岩中测得的拱顶沉降都较大; 2)拆除隧道支撑会引起较大的拱顶沉降,其比例占总拱顶沉降的14.63%; 3)隧道在淤泥质软土中开挖时会发生椭圆化变形,二次衬砌完成后,由于隧道基底承载力不足,隧道产生了整体沉降; 4)降雨会使上部土体超载,并弱化围岩的强度,导致拱顶沉降加大; 5)土质条件与施工工法的变化都会明显影响拱顶沉降,在隧道变形要求严格的区域或淤泥质软土中,采用CRD工法开挖风险仍较大。  相似文献   

20.
以雅康高速公路大渡河特大悬索桥雅安岸锚碇隧道项目为依托,通过现场监测左右洞拱顶沉降和边墙围岩变形量,分析锚碇隧道在开挖过程中的围岩变形特征及其对围岩的稳定性影响。结果表明:先行洞(左洞)受到后行洞开挖的影响,其拱顶最终沉降量由6.00 mm增加到11.50 mm,右洞的拱顶最终沉降量为8.00 mm;因左右洞中夹岩的存在,后行洞左边墙变形量大于右边墙,并使先行洞右边墙的水平变形由2.41 mm增加到3.83 mm;净距变小,埋深、断面尺寸变大使隧道的拱顶沉降增加,但对边墙围岩变形不产生明显影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号