首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
为定量化得出高速公路同一车道中前后相邻车辆的碰撞概率,从制动减速度的角度出发,提出一种新的前后相邻车辆碰撞概率计算方法。分别考虑前后车发生碰撞的3种不同情况,推导出如果发生碰撞前车需要的最小制动减速度。基于路侧毫米波雷达获取海量车辆运行状态真实数据,包括轨迹、速度以及制动减速度的变化规律,采用广义帕累托分布(Generalized Pareto Distribution,GPD)建立制动减速度分布模型,进一步基于GPD模型计算出在不同场景下如果发生碰撞所需最小制动减速度的发生概率,将该概率值确定为碰撞概率。研究结果表明,在本研究路段,约99.10%的加速度在[-1, 1] m·s-2的区间范围内波动,车辆制动减速度的分布具有“长尾”特征,较大的制动减速度占比非常小。内侧1车道、2车道加速分布比3车道的分布更为集中,大型货车的加速度分布比小客车的加速度分布更集中。最后,基于真实的危险场景数据以及模拟的典型危险场景数据进行验证,将该方法的计算结果与传统方法的计算结果相比较,表明该方法的计算结果连续,且可迅速、准确地识别各类危险场景。  相似文献   

2.
通过信号交叉口设置的监控设施,获取停车线前f 辆车的相关信息,以其为分析数据源,重构车辆运行轨迹,提取信号交叉口的延误参数. 对于轨迹重构中车辆运行时减速、停车、启动,以及恢复正常行驶速度等关键时间点的确定方法为:借助前f 辆车的停车时间信息和车辆到达概率分布函数,确定后续车辆的停车时间;结合车辆减速过程满足的双曲正弦函数,确定经历排队车辆的减速时间点;以前f 辆车的启动时间为输入,借助饱和车头时距,计算车辆启动时间点;根据车辆加速满足的匀变加速过程,确定车辆恢复正常行驶速度的时间点. 最后,通过实际车辆轨迹数据验证了该方法的精度.  相似文献   

3.
针对空管运行管理风险评估指标的复杂性、模糊性和不确定性,引入不确定型层次分析,以区间数代替确定值对两因素之间的相对重要性作出判断,建立区间数判断矩阵。建立了空管运行管理风险评价体系..并采用参数表法来对模糊综合评价结果进行反模糊化,确定空管运行安全的评估等级。实例分析结果表明该方法具有实用性,能够反映空管运行管理的实际安全状态.  相似文献   

4.
为减少公交车行驶油耗,提出了公交车绿色车速引导策略。根据公交线路信息、公交车行驶状态及公交车油耗特性,该策略优化控制了公交车的行驶速度。通过该策略,在控制公交车的行驶轨迹、提升行驶效率的同时,可避免多余的加、减速过程,有效减少公交车交叉口停靠时间和公交车行驶油耗。基于公交车GPS数据,分析了公交车实际运行特性,确定了公交车最佳绿色控制速度,建立了绿色引导模型。并通过仿真实验,验证了该模型的效果。  相似文献   

5.
为了研究车辆微观运行参数与车辆运行状态的关系,以交通环境复杂的匝道合流区为例,分析了二者之间的关系,并以此为依据对车辆运行状态进行了预判。采用自然驾驶数据集,提取出不同场景下的车辆交互信息,分析了各场景间的差异性及其与车辆加减速行为的相关性,将车辆运行状态分为三类并对典型场景分别利用k-means和高斯混合模型(GMM)两种方法进行了对比聚类分析。结果表明,不同场景情况下的车辆微观运行参数与加速度的相关程度存在着明显的差异;从聚类的结果中可以看出,在典型场景下GMM的聚类结果优于K-means,且仅靠微观运行参数不能完全地反应车辆运行特性。  相似文献   

6.
城市轨道牵引变电所存在多种运行状态:整流状态、整流机组关断状态、逆变回馈装置恒定电压运行状态、逆变回馈装置最大功率运行状态. 针对潮流计算中牵引变电所状态的不确定而影响计算收敛性的问题,提出一种考虑牵引变电所多运行状态的城轨交直流供电计算算法. 该算法对逆变回馈装置和车载制动电阻建模,根据迭代过程中牵引变电所网压、电流,采用滞环比较策略确定牵引变电所状态,通过交直流交替迭代方法求解潮流. 对某地铁工程进行仿真分析和实测验证,结果表明:仿真与实测的牵引变电所负荷过程曲线Pearson相关系数为0.76~0.92;逆变回馈装置节能率的仿真结果与实测误差不超过1.7%;在全线整流机组空载电压较高的场合,当逆变回馈装置的启动电压设置在1750 V以上时,消耗在车载制动电阻上的能量显著增大.   相似文献   

7.
为了提高高速列车轴箱轴承的运行可靠性,将安全域理论引入到轴承的状态监测,并将传统安全域估计转化为确定安全域的边界值来避免复杂模型参数的影响;利用归一化内禀模态分量的能量距构建轴承运行的状态特征向量,根据关联函数建立轴承安全域边界值估计模型,采用粒子群优化算法进行寻优求解;基于求解结果,结合关联函数定量分析轴承的运行状态,利用轴承全寿命疲劳试验进行验证,并将该方法应用于轴箱轴承的状态监测. 研究结果表明:全寿命试验的轴承运行状态的检出率和分类正确率分别为0.951和0.939;高速列车轴箱轴承运行状态的分类正确率为0.935,轴承运行正常,与其实际状态相一致.   相似文献   

8.
为监测高速列车传动系统的运行状态,根据可拓学理论,建立了传动系统各部件的运行状态物元,提出了一种部件正常运行状态下的特征参数经典域优化方法.利用部件样本集与其正常运行状态之间的最大综合关联度构建了适应度函数,并利用并行粒子群优化算法进行解算,确定了特征参数的经典域范围.与用数理统计方法得到的经典域结果进行了对比分析,结果表明,用本文经典域优化结果得到的最大综合关联度的最大值和平均值分别提高了3.63%和2.51%,经典域优化结果更符合部件的实际运行状况.   相似文献   

9.
合理构造影响交通状态网络结构,是实现交通状态预测的前提条件.为克服爬 山法易陷入局部最优的缺陷,提出一种基于随机重复爬山法的交通状态预测方法.对随机 生成的有向无环图迭代运行爬山法得到多网络结构;通过有向边置信度的定义和置信度 阈值的计算,确定了最优贝叶斯网络结构中节点和有向边选取准则;利用最优贝叶斯网 络结构,实现了畅通、平稳、拥挤和阻塞等4 种交通状态的预测并综合评价.分析结果表 明,该方法仅选取时段、节假日等两变量时,对交通状态预测总体准确率超过85%,能够 为高速公路运行状态监测预警和决策分析提供有效方法和数据支撑.  相似文献   

10.
电力驱动系统目前主要有三种技术路线:电机+变速器、电机+减速箱、电机直接驱动。  相似文献   

11.
Kohonen神经网络能够模仿人脑特征进行自组织学习,并能根据其学习规则,对输入模式自动进行分类。文章通过对Kohonen神经网络模型的研究,运用VC语言实现其算法,并完成对该神经网络分类功能的测试。  相似文献   

12.
慢行交通速度是慢行交通参数不可或缺的一部分,现有的通过目标检测从视频中提取目标速度的方法不能兼具检测准确率与目标框的稳定性,且选取的速度计算基准点(简称基准点)波动大,存在速度不准确、不稳定的问题。为解决此问题,本文提出一种基于 YOLOv5(You Only Look Once Version 5)的融合检测跟踪网络及速度计算方法,获取更准确、稳定的速度。首先,使用目标检测与目标跟踪单元得到目标的检测框与ID信息,并根据检测框获取目标感兴趣区域送入头部检测单元,进一步获取头部检测框;其次,根据场景下的目标特征判断头部检测框所属,并根 据判断结果提供两种基准点计算方法;最后,对二维基准点坐标进行三维映射,并将结果代入速度计算公式获得速度;同时,提出准确度( MA )、稳定度( MS )两个评价指标以量化评价方法。本文在公开数据集PETS09-S2L1与TUD-Stadtmitte上验证融合网络的检测、跟踪效果,在自建双视角协同数据集上验证基准点计算和速度计算方法的效果。实验结果显示,融合网络的目标检测和跟踪准确率(MOTA)比单一网络高25%以上,本文速度计算方法比常用速度计算方法的准确度提高了30%,稳定度提高了6.28%。本文方法可兼具检测准确率与目标框的稳定性,选取的基准点波动更小,获得的速度更准确、稳定。  相似文献   

13.
采用因子分析将公路运输枢纽载体城市的14项统计指标简化为3类综合因子,构建Koho-nen网络模型并输入综合因子变量得到公路运输枢纽的初步分类方案,通过F-统计量检验分类效果发现将所选44个公路运输枢纽分为4类最佳.结果表明,因子分析与Kohonen网络结合是一种有效的公路运输枢纽分类方法,公路运输枢纽具有较明显的4个层级结构.  相似文献   

14.
一座预应力连续箱梁在运营车辆荷载的作用下,产生了较明显的多条斜向超限裂缝,经详细检算分析出产生的原因,采用了箱梁内部增设体外预应力束及竖向预应力钢筋的方法,进行了有针对性的抗剪加固设计,保证了运营期间结构的安全性和耐久性.  相似文献   

15.
风荷载是起重机大车运行时的重要载荷,主梁作为起重机的主要挡风构件,针对主梁的减载设计可以有效地降低起重机运行能耗,本文以粒突箱鲀的结构为启发,探究起重机箱梁风荷载的仿生减载设计方法. 首先运用灰度转换、二值图像转换及边缘检测方法提取箱鲀鱼嘴特征廓线,获得以箱梁特征高度为设计变量的仿生设计模型,然后通过箱梁迎风面附着轻质材料的方式实现传统起重机箱梁的仿生设计,并运用计算流体力学软件(FLUENT)对仿生设计进行评估. 研究结果表明:以某40 t集装箱起重机箱梁为例,采用聚苯乙烯泡沫作为轻质贴附材料的仿生箱梁较传统箱梁结构风阻减小65.77%,而仿生贴附结构仅使箱梁增重2.28%;仿生箱梁的流线外型减轻了由迎风面处边界层分离带来的流场扰动,降低了结构的气动力脉动值,提高了起重机在风场中运行的平稳性.   相似文献   

16.
研究了轴箱横向载荷高精度测试方法,将经过标定的轴箱安装于运用车辆,获得了载荷-时间历程,结合车辆运行状态分析了在高速线路典型服役条件下的载荷特性,编制了对应于进出站工况、低速运行、高速运行的恒幅载荷谱。研究结果表明:轴箱横向载荷影响因素主要为列车运行速度、曲线半径、道岔、轨道不平顺;运行中普遍存在着相对固定且与车辆运行速度无关的2 Hz的低载荷主频;对于大于5 Hz的频率,载荷主频与列车的运行速度直接相关,曲线通过时内轨侧轴箱载荷变化幅值稍大于外轨侧,且载荷均值以及最大载荷幅值均随列车运行速度的增大而增大;曲线半径增大的同时横向载荷均值逐渐接近于0,最大载荷幅值也逐渐减小;进出站道岔会造成横向载荷出现约10 s的一次波动,同时包含短时间冲击载荷;横向轨道不平顺会造成轴箱横向载荷在通过相应区间时出现多个大幅波动,随着运行速度的增加,波动周期缩短,峰值减小;进出隧道对横向载荷影响不明显;对于不同运行工况下的载荷谱,进出站工况载荷幅值最大,作用频次占很少部分;低速运行载荷幅值次之,作用频次占比约为1/3,高速运行载荷幅值最小,作用频次占比达到60%以上。   相似文献   

17.
随着对波纹钢腹板新型桥梁研究的深入开展,其动力性能也备受关注.波纹钢腹板桥梁截面形式的不同,对其动力性能有着很大的影响.本文针对常用的单箱双室和双箱双室两种截面形式,分别建立了有限元模型,得到了其自振特性,对其动力特性进行了分析比较.分析结果表明:波纹钢腹板箱梁在正常使用状态下,双箱双室截面的扭转刚度较截面为单箱双室箱梁偏低,整体性较差.本文的研究成果可以为波纹钢腹板桥梁的设计提供参考.  相似文献   

18.
扁平箱梁因具有较优的颤振性能,已被应用于绝大多数大跨径桥梁. 为便于桥梁设计者在大跨度桥梁初步设计阶段快速评估扁平箱梁的颤振性能,提出了一种基于集成学习的深度神经网络模型,用于快速预测扁平箱梁颤振导数. 首先采用强迫振动风洞试验获取了15种典型扁平箱梁的颤振导数,结合自由振动风洞试验和二维颤振计算验证了颤振导数的准确性;基于风洞试验数据,构建了大小为525的颤振导数数据集,以此数据集为基础,对所提出的集成式深度神经网络开展了模型训练和性能测试. 计算结果表明:所提出的集成式深度神经网络模型仅依靠扁平箱梁的气动外形特征即可准确且快速地预测不同折算风速下的8个颤振导数,且仅利用本文60%的数据集进行训练即可获取较高精度的预测结果;对比传统的多项式回归模型和单一人工神经网络模型,本文所提出的集成式深度神经网络模型预测精度更高,可直接应用到桥梁初步设计阶段的气动选型和颤振计算中.   相似文献   

19.
为实现舵角小、试验数据少条件下船舶操纵辨识建模, 提出了一种船舶操纵运动灰箱模型; 搜集水动力系数已知的船舶运动数学模型作为备选参考模型(RM), 计算被辨识船舶与备选RM的相关系数, 并以此筛选合适的RM; 运用相似准则将观测数据映射到RM的输入值域, 建立被辨识船舶与RM的运动关联, 获得了RM的加速度项, 并使用线性支持向量回归(LSVR)机补偿被辨识船舶和RM加速度项间的误差; 分析了机理模型, 设计了合适的LSVR输入项, 使用全局优化(GO)算法自动调节了LSVR的不敏感边界参数; 基于自航模试验数据训练了灰箱模型, 并与约束模试验(CMT)结果和计算流体力学结果比较, 验证了灰箱模型的泛化能力和预报精度。研究结果表明: 在20°船艏向、20°舵角Z形试验预报中, 灰箱模型所得第一超越角精度至少比CMT、虚拟约束模试验(VCMT)和RM方法所得结果高1°, 灰箱模型所得第二超越角精度至少比CMT和VCMT所得结果高0.4°; 在35°舵角旋回试验预报中, 灰箱模型所得进距精度至少比CMT、VCMT、数值循环水槽试验(NCWCT)和RM方法所得结果高1%, 灰箱模型所得战术直径精度比CMT所得结果低4%, 比NCWCT所得结果高10%;RM方法有助于灰箱辨识建模, GO算法能够优化LSVR的不敏感边界参数, 建立的单参数自调节灰箱辩识建模方法能够实现小舵角、少数试验条件下的船舶操纵辨识建模。   相似文献   

20.
本文基于北京市出租车实际运行数据,研究城市快速路基本路段不同工况、服务水平下驾驶行为对出租车油耗的影响,分析各条件下生态驾驶节能潜力.应用方差分析方法,分析不同条件下驾驶行为对出租车油耗的影响.研究结果表明,出租车在城市快速路基本路段加、减速频繁;随服务水平提高,加速、匀速工况下车辆油耗升高,减速工况下车辆油耗降低;低服务水平下加速工况油耗是车辆油耗的主要来源.考虑各条件下油耗对出租车总油耗的贡献,提出生态驾驶行为节能潜力计算方法.分析结果表明,加速工况下生态驾驶节能潜力最高,出租车在快速路基本路段取生态驾驶行为的综合节能潜力可达 11.18%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号