首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
张博  杨文志  芦勇 《汽车工程》2022,(11):1755-1762
针对冗余转向系统设计周期长、成本高的问题,提出了利用多体动力学软件ADAMS和控制仿真软件Simulink联合建立冗余转向系统虚拟样机系统的方法。在分析齿轮齿条动力学的基础上建立了转向系统动力学模型,基于Simulink建立冗余转向系统的控制模型,并在Simulink中搭建了联合仿真模型,利用该虚拟样机系统对设计的冗余转向系统进行助力性能仿真。通过仿真和试验验证,设计的冗余转向系统具有良好的助力性能且具有一定容错性,满足转向系统的使用要求;联合仿真所得数据和试验误差在5%以内,联合仿真的方法可行。  相似文献   

2.
基于二自由度车辆动力学模型,利用MATLAB建立了车辆主动后轮转向系统的控制策略模型。采用某后轮转向样车参数,对控制模型进行了仿真分析,以研究主动后轮转向对车辆横摆角速度、侧向加速度等动态指标的影响。之后通过实车测试分析,验证了控制模型的有效性。仿真及实车测试结果一致表明,主动后轮转向能够在低速时提升车辆的灵活性,高速时提升车辆的稳定性,很好地改善车辆的动态转向特性。  相似文献   

3.
基于刚柔耦合仿真模型的汽车转向机构改进设计   总被引:1,自引:0,他引:1  
针对SGA3550矿用汽车样车出现的转向梯形臂扭转变形问题,应用多体系统动力学方法对其进行了分析研究.应用有限元软件建立了转向横拉杆模型,计算其固有模态.结合多体动力学分析软件建立了汽车转向机构的刚柔耦合仿真模型,研究转向梯形臂在转向过程和车轮反向跳动过程中承受的扭矩,并与多刚体模型的仿真结果进行了对比.结果表明,基于刚柔耦合模型的仿真分析更为准确地反映了转向机构的动力学特征.  相似文献   

4.
针对大排量摩托车高速转向行驶时的操纵稳定性问题,以某1 100型大排量摩托车为研究对象,通过三维扫描技术获得该车型三维结构设计参数,应用摩托车动力学仿真软件BikeSim建立人-机-路环境下摩托车系统动力学模型。对模型分别进行稳态转弯行驶和障碍滑雪式行驶仿真试验,评价其高速转向性能,并将仿真试验结果与道路试验结果对比。结果表明:该车型高速行驶时转向性能优异,且仿真数据结果与道路试验结果基本吻合,对摩托车高速运动特性研究具有一定指导意义。  相似文献   

5.
乘用车转向系统的匹配设计中,齿条力的确定至关重要,最大齿条力的计算为转向系统匹配设计提供依据。本文结合实际工作经验,对转向系统最大齿条力的计算进行研究和验证。该方法在CAE整车模型建立之前即可计算出最大齿条力值,从而节省开发时间。  相似文献   

6.
介绍了四轮独立驱动/四轮独立转向(4WID/4WIS)电动车的特点,基于Matlab/Simulink搭建了各子系统及整车的动力学仿真模型,设置了该类型电动车特有的驾驶模式选择功能。模型允许对4个车轮输入不同的驱动转矩和转角;考虑了驱动电机、转向电机的动态响应特性。针对4WID/4WIS电动车特有的蟹行、斜行和原地转向工况进行了仿真。结果表明,模型能够较好地反映4WID/4WIS电动车的动力学响应特性。  相似文献   

7.
汽车转向系统为一多体系统,部件之间的运动关系十分复杂,传统的人工计算很难将汽车的转向特性表述清楚。本文以某轿车为例,应用多体运动学与动力学仿真软件ADAMS中的CAR模块方便地建立了四轮转向系统的整车仿真模型,并进行了计算分析。  相似文献   

8.
研究了一种理论上能做直线导引运动的新型空间机构,基于这一空间机构和相匹配的转向杆系,建立了汽车前独立悬架系统动力学模型。考虑悬架导向机构的结构参数、转向杆系对车轮运动的影响以及橡胶衬套的变形,通过仿真分析,得出了该新型前独立悬架的主要运动学特性参数的变化规律,验证了理论分析结果。与麦弗逊和双叉臂式前悬架主要运动学特性参数进行对比表明,该新型前独立悬架具有优异的运动学性能,与其匹配的转向杆系能最大限度地减小转向干涉。  相似文献   

9.
以多体系统动力学理论为基础,建立了双轴转向8×4货车的多体系统动力学模型,建模过程中考虑了弹簧、阻尼器以及橡胶衬套的非线性特性,并以ADAMS软件为二次开发平台,建立了整车非线性多体动力学仿真分析系统,实现了以下功能:对双轴转向8×4货车整车模型的参数化自动建模功能;按照国标试验工况的自动仿真分析功能;符合汽车评价标准的仿真结果数据后处理功能。最后通过实车试验验证了模型的正确性,在此基础上进行了整车的随机输入平顺性分析。  相似文献   

10.
轮胎非稳态转向特性非线性仿真模型   总被引:2,自引:1,他引:2  
郭孔辉  侯永平 《汽车工程》1999,21(6):321-325
本文以轮与路面之间的滑移速度为出发点,在稳态指数统一模型的基础上,建立了轮胎非稳态转向特性非线性仿真模型。在实验研究中,发现了动态过程回正力臂和附加的回正力矩的滞后特性。仿真和试验结果对比表明,该模型足以反映轮胎非线性转向特性,可用于前轮及汽车操纵动力学仿真方面的研究。  相似文献   

11.
通过理论分析、数值仿真和经验统计等方法,对可变助力转向系统的助力特性进行研究,提出一种基于驾驶员路感的可变助力转向特性设计方法,并对其进行整车仿真试验.结果表明:所得到的可变助力特性,不仅能满足低速行驶转向时的轻便性要求,而且可保证在高速行驶转向时有合适的路感和必要的稳定感.  相似文献   

12.
概述了电动助力转向系统(EPS)的结构和工作原理,并介绍了电动助力转向系统助力特性的设计方法。在分析了电动助力转向系统各组成部分数学模型的基础上,构建了基于Simulink与carsim的电动助力转向系统仿真模型,仿真结果表明:所设计的助力特性较好地协调了转向轻便性和路感之间的矛盾。  相似文献   

13.
The differential steering system (DSS) of electric wheel vehicle gets rid of the restrictions of traditional steering system completely. As an ideal steering technology, it not only realizes the perfect combination of the road feel and the steering portability, but also realizes the harmony and unification between the steering maneuverability and safety. The structure and basic theory of the DSS of electric wheel vehicle are discussed in this paper. Based on these, the dynamic model of the steering system is built. Considering of the uncertainties and disturbances existing in the model, the H mixed sensitivity control theory is applied to achieve better tracking performance and road feel in the process of steering. Then, a H mixed sensitivity controller is designed to restrain the effect of the road disturbance and model uncertainties. The simulation results indicate that the DSS with the designed controller can effectively restrain the effect of noises and disturbances caused by random motivation from road, torque sensor measurement and model parameter uncertainty, and enable the driver to obtain satisfactory road feel.  相似文献   

14.
应用ADAMS/Car软件,建立包括前后悬架、转向系、车身等在内的某车型的多体动力学模型;利用编制的路面谱文件,进行汽车脉冲和随机路面输入的平顺性仿真分析.将仿真后的测量数据输入到编制的平顺性评价程序中.根据国标对分析结果进行评价。  相似文献   

15.
结合独立悬架车辆转向轮定位参数的特点,采用二元二次回归正交组合设计方法设计了试验方案,并对影响转向轮侧滑的轮胎胎压、载荷和车速等相关因素进行了试验研究。通过对试验数据进行回归处理,得到了侧滑量与转向轮定位参数间的定量映射关系,并对其进行了回归系数、回归方程的显著性检验和失拟检验。结合汽车动力学相关理论对试验研究结果进行了分析。  相似文献   

16.
SUMMARY

Numerical design of vehicles having optimal straight line stability on undulating road surfaces requires an accurate vehicle model based on knowledge of the relevant phenomena. Therefore, vehicle behavior on undulating straight roads has been analyzed and modeled. Measurements on a flat road surface have shown that the dedicated vehicle model yields accurate simulation results of the steering response to medium steering wheel angle inputs. In addition, the model has been validated by measuring two vehicle responses during normal driving on an undulating straight road: viz. the responses to the small steering wheel angle input and to the input by the global inclination of the road surface.  相似文献   

17.
When driving in curves, how do drivers use the force appearing on the steering wheel? As it carries information related to lateral acceleration, this force could be necessary for drivers to tune their internal model of vehicle dynamics; alternatively, being opposed to the drivers' efforts, it could just help them stabilize the steering wheel position. To assess these two hypotheses, we designed an experiment on a motion-based driving simulator. The steering characteristics of the vehicle were modified in the course of driving, unknown to drivers. Results obtained with standard drivers showed a surprisingly wide range of adaptation, except for exaggerated modifications of the steering force feedback. A two-level driver model, combining a preview of vehicle dynamics and a neuromuscular steering control, reproduces these experimental results qualitatively and indicates that adaptation occurs at the haptic level rather than in the internal model of vehicle dynamics. This effect is related to other theories on the manual control of dynamics systems, wherein force feedback characteristics are abstracted at the position control level. This research also illustrates the use of driving simulation for the study of driver behavior and future intelligent steering assistance systems.  相似文献   

18.
Numerical design of vehicles having optimal straight line stability on undulating road surfaces requires an accurate vehicle model based on knowledge of the relevant phenomena. Therefore, vehicle behavior on undulating straight roads has been analyzed and modeled. Measurements on a flat road surface have shown that the dedicated vehicle model yields accurate simulation results of the steering response to medium steering wheel angle inputs. In addition, the model has been validated by measuring two vehicle responses during normal driving on an undulating straight road: viz. the responses to the small steering wheel angle input and to the input by the global inclination of the road surface.  相似文献   

19.
When driving in curves, how do drivers use the force appearing on the steering wheel? As it carries information related to lateral acceleration, this force could be necessary for drivers to tune their internal model of vehicle dynamics; alternatively, being opposed to the drivers' efforts, it could just help them stabilize the steering wheel position. To assess these two hypotheses, we designed an experiment on a motion-based driving simulator. The steering characteristics of the vehicle were modified in the course of driving, unknown to drivers. Results obtained with standard drivers showed a surprisingly wide range of adaptation, except for exaggerated modifications of the steering force feedback. A two-level driver model, combining a preview of vehicle dynamics and a neuromuscular steering control, reproduces these experimental results qualitatively and indicates that adaptation occurs at the haptic level rather than in the internal model of vehicle dynamics. This effect is related to other theories on the manual control of dynamics systems, wherein force feedback characteristics are abstracted at the position control level. This research also illustrates the use of driving simulation for the study of driver behavior and future intelligent steering assistance systems.  相似文献   

20.
王建华  王云成  付铁军  张宝生 《汽车工程》2006,28(5):460-464,476
采用7自由度车辆动力学模型,对装用JA1020LSD型转矩式限滑差速器的后轮驱动汽车进行了操纵稳定性研究。通过仿真分析和道路试验研究表明:装用限滑差速器后增加了后轮驱动车辆的不足转向趋势,即改善了操纵稳定性,但转向力矩略有增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号