首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 500 毫秒
1.
高速、准高速列车传动齿轮箱试验技术的研究   总被引:4,自引:1,他引:3  
随着我国铁路向高速化方向发展,提速车、准高速、高速列车不断出现,作为转向架的重要部件之一的牵引传动齿轮箱,其性能的优劣直接影响转向架的性能.必须通过综合试验检测手段对组装后的牵引齿轮传动箱的整体性能指标是否达到可靠性要求进行判定.本文以270km/h高速列车传动齿轮箱为例,阐述戚墅堰机车车辆工艺研究所研制的传动齿轮箱综合性能试验台在高速、准高速列车传动齿轮箱台架试验所做的工作,及在高速、准高速列车传动齿轮箱试验技术方面的成果.  相似文献   

2.
高速列车传动齿轮箱功率损失计算方法   总被引:1,自引:0,他引:1  
传动齿轮箱的功率损失在高速列车的功率计算中非常重要,直接影响到整车的功率设计,以前的功率损失通常在齿轮箱制作完成后,经过型式试验测定而得。本文在查阅和评估大量国外文献的基础上,优选出一套用于高速列车传动齿轮箱的计算方法,并对一实际高速列车齿轮箱的功率损失进行了计算分析。  相似文献   

3.
高速列车传动齿轮箱浸油深度对平衡温度的影响   总被引:1,自引:0,他引:1  
传动齿轮箱作为高速列车动力系统的关键部件,随列车运行速度的提高,箱内的工作条件急剧恶化.本文针对中国南车集团开发的高速列车传动齿轮箱,采用经验公式,计算分析了在不同转速下,齿轮箱浸油深度对搅油损失的影响.并建立齿轮箱的传热模型,采用有限差分法,在模型验证有效的基础上,计算分析了不同浸油深度对齿轮箱平衡温度场的影响.为高速列车传动齿轮箱浸油深度的选取和运行参数优化提供了理论基础.  相似文献   

4.
传动齿轮箱作为高速动车组走行系统的核心部件,直接决定列车的运行速度和运行状况,对列车的行车安全起着至关重要的作用。提出了一种基于Lasso回归的动车组齿轮箱性能检测方法,通过分析动车组齿轮箱实际运行时的性能指标与其期望值的偏离情况,检测动车组齿轮箱的异常状态,进而识别动车组齿轮箱的早期故障。实例验证了基于Lasso回归的动车组齿轮箱性能检测方法的有效性和可行性。  相似文献   

5.
将高速列车齿轮箱各零件转换为温度节点,建立高速列车齿轮箱热网络模型;计算高速列车齿轮箱零件热功率损失与热传递过程中的热阻,使用Matlab求解热网络模型,得到高速列车齿轮箱体内各节点的热平衡温度;并计算高速列车齿轮箱输入转速、润滑油粘度、箱体材料导热系数对高速列车齿轮箱关键零件热平衡温度的影响。结果表明:高速列车齿轮箱轴承、齿轮、润滑油的热平衡温度随着高速列车齿轮箱输入转速的增加而升高,随着润滑油粘度的增加而升高,但随着箱体导热系数的增加而降低。  相似文献   

6.
对更高速度等级动车组齿轮箱进行了试验研究,对齿轮箱典型性能参数进行了测试和分析,试验结果和分析表明,齿轮箱温升正常,密封可靠,传动平稳,无异常振动和噪声,齿轮箱运转正常,满足更高速度应用要求。通过本试验研究,可为高速动车组齿轮箱开发和试验提供技术积累及参考。  相似文献   

7.
当西班牙新的AVES103型高速列车投入运行时,马德里—巴塞罗那间铁路干线上的列车最高运行速度将达到350km/h。德国VoithTurbo公司为这种特殊用途列车专门开发了采用圆柱齿轮的SE380型牵引传动装置(牵引齿轮箱)。这种圆柱齿轮牵引传动装置是ICE3型高速列车所用牵引传动装置的进一步发展。对于这种在西班牙运用的未来列车的设计,规定牵引齿轮箱要采用非常轻的结构,同时噪声也要低。VoithTurbo公司开发的SE380.3型牵引齿轮箱实现了上述两项要求。文中介绍了新型牵引齿轮箱的开发理念、设计过程和试验纲要。试验包括无负荷试验、有负荷试验及冷却试验。  相似文献   

8.
高速动车组牵引传动单元的工作状态关系到列车的运行安全,对其温升情况的监视尤为重要.通过对动车组牵引电机轴承以及齿轮箱温度监控技术进行分析,并结合运用情况提出了优化方案.  相似文献   

9.
西班牙马德里一巴塞罗那高速铁路即将建设完成,在这条高速新线上将采用新的AVES103电动车组承担运营,设计列车最高运行速度350km/h。由Voith Turbo公司为满足新型高速列车技术性能要求研制生产的正齿轮传动SE380系列牵引齿轮箱,是目前铁路所采用重量减轻、噪声降低的新一代齿轮箱,已先在德国铁路(DBAG)ICE 3型高速列车上装用,现在其性能和结构又得到进一步改进。新的齿轮箱在最高运行速度条件下单位功率得到提高,噪声水平大大低于VDI 2159规则规定的最大值。  相似文献   

10.
高速列车齿轮箱内的齿轮副的强度为列车安全运行的关键因素,以我国自主研发的某高速列车转向架齿轮箱齿轮副为研究对象,通过建立齿轮系统三维实体模型,通过SOLIDWORKS简化并建立有限元仿真模型,利用ANSYS WORKBENCH对齿轮啮合部位进行静态和瞬态力学分析。理论计算值和仿真分析结果都在强度安全范围之内,符合设计要求。在瞬态分析时发现,在齿轮启动阶段接触应力较大且出现应力波动,对齿轮系统的可靠性有一定的不利影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号