首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The integration of electric vehicles (EVs) will affect both electricity and transport systems and research is needed on finding possible ways to make a smooth transition to the electrification of the road transport. To fully understand the EV integration consequences, the behaviour of the EV drivers and its impact on these two systems should be studied. This paper describes an integrated simulation-based approach, modelling the EV and its interactions in both road transport and electric power systems. The main components of both systems have been considered, and the EV driver behaviour was modelled using a multi-agent simulation platform. Considering a fleet of 1000 EV agents, two behavioural profiles were studied (Unaware/Aware) to model EV driver behaviour. The two behavioural profiles represent the EV driver in different stages of EV adoption starting with Unaware EV drivers when the public acceptance of EVs is limited, and developing to Aware EV drivers as the electrification of road transport is promoted in an overall context. The EV agents were modelled to follow a realistic activity-based trip pattern, and the impact of EV driver behaviour was simulated on a road transport and electricity grid. It was found that the EV agents’ behaviour has direct and indirect impact on both the road transport network and the electricity grid, affecting the traffic of the roads, the stress of the distribution network and the utilization of the charging infrastructure.  相似文献   

2.
Take-up rates of electric vehicles (EV) are increasing and are predicted to accelerate rapidly. Public EV charging networks will be required to support future EV fleets. If unplanned, public charging networks are highly likely to be suboptimal. Planners need to understand and plan for future EV charging infrastructure requirements, particularly public DC fast charging networks, as both the upfront investment costs and the consequences of misallocation are high. However, the task of determining the optimal locations and allocations (types and numbers) of public EV charging infrastructure is complicated as it requires knowledge of many variables. These include EV driver behaviors, driving patterns, predicting evolutionary changes in EV and EV charging technologies, future EV take-up rates, and what investment may or may not occur in the absence of government funding support.  相似文献   

3.
Electric vehicles (EVs) are still a maturing technology. Barriers to their adoption include price and range anxiety. EV batteries are significant in determining both EV prices and costs. In this work, we focus on the impact of a high-capacity battery and EV rebates on an EV ecosystem. Using survey data from Los Angeles, California, we simulate different cases of battery costs and prices by means of an agent-based EV ecosystem model. We find that even in Los Angeles, a geographically spread out city, the price of EVs is a more significant barrier to adoption than EV range. In fact, even a quintupling of battery size at no additional costs improves EV adoption by only 5 %. Therefore, policy makers should focus more on affordability than range in promoting EV adoption.  相似文献   

4.
Previous research has shown that electric vehicle (EV) users could behave differently compared to internal combustion engine vehicle (ICEV) drivers due to their consciousness or practices of eco-driving, but very limited research has fully investigated this assumption. This research explores this topic through investigating EV drivers’ eco-driving behaviors and motivations. We first conducted a questionnaire survey on EV drivers’ driving behavior and some hypothetical decisions of their driving. It indicates various characteristics between EV and ICEV commuters, including self-reported daily driving habits, preferences of route choices, tradeoff between travel time and energy saving, and adoption of in-vehicle display (IVD) technologies. Then, through statistical analysis with Fisher’s exact test and Mann-Whitney U test, this research reveals that, compared to ICEV drivers, EV drivers possess significantly calmer driving maneuvers and more fuel-efficient driving habits such as trip chaining. The survey data also show that EV drivers are much more willing to save energy in compensation of travel time. Furthermore, the survey data indicate that EV drivers are more willing to adopt eco-friendly IVD technologies. All these findings are expected to improve the understanding of some unique behavior found in EV drivers.  相似文献   

5.
This study explores how to facilitate the electric vehicle (EV) diffusion from a two-sided market platform competition. We develop a stylized model depicting the platform competition between electric and gasoline vehicles by combining indirect network effects of consumer and energy supplier sides as well as vehicle manufacturers’ profits. The findings of this study provide several meaningful strategic and policy implications for EV manufacturers and policymakers who wish to enhance EV diffusion. First, EV sales are significantly influenced by indirect network effects from the energy supplier side to the consumer side, and vice versa. This implies that EV manufacturers who wish to boost EV diffusion should implement a strategy providing energy suppliers with incentives to willingly join the EV platform. Second, the dynamic nature of the effects of energy costs on platform competition might render counter-intuitive evidence that the drop in oil prices does not always negatively influence EV sales. This requires EV manufacturers to prepare a contingent strategy adjusting to such unexpected conditions. Third, governments should consider the energy supplier side as well as the consumer side in designing EV diffusion policies. When governments have a very challenging EV diffusion target, a balanced policy, which treats both gasoline and electric vehicle technologies fairly, may be more effective than a consumer subsidy policy.  相似文献   

6.
Use of electric vehicles (EVs) has been viewed by many as a way to significantly reduce oil dependence, operate vehicles more efficiently, and reduce carbon emissions. Due to the potential benefits of EVs, the federal and local governments have allocated considerable funding and taken a number of legislative and regulatory steps to promote EV deployment and adoption. With this momentum, it is not difficult to see that in the near future EVs could gain a significant market penetration, particularly in densely populated urban areas with systemic air quality problems. We will soon face one of the biggest challenges: how to improve efficiency for EV transportation system? This research takes the first step in tackling this challenge by addressing a fundamental issue, i.e. how to measure and estimate EVs’ energy consumption. In detail, this paper first presents a system which can collect in-use EV data and vehicle driving data. This system then has been installed in an EV conversion vehicle built in this research as a test vehicle. Approximately 5 months of EV data have been collected and these data have been used to analyze both EV performance and driver behaviors. The analysis shows that the EV is more efficient when driving on in-city routes than driving on freeway routes. Further investigation of this particular EV driver’s route choice behavior indicates that the EV user tries to balance the trade-off between travel time and energy consumption. Although more data are needed in order to generalize this finding, this observation could be important and might bring changes to the traffic assignment for future transportation system with a significant share of EVs. Additionally, this research analyzes the relationships among the EV’s power, the vehicle’s velocity, acceleration, and the roadway grade. Based on the analysis results, this paper further proposes an analytical EV power estimation model. The evaluation results using the test vehicle show that the proposed model can successfully estimate EV’s instantaneous power and trip energy consumption. Future research will focus on applying the proposed EV power estimation model to improve EVs’ energy efficiency.  相似文献   

7.
Electric Vehicles (EV) are highly beneficial due to their reliance on electricity and Climate Change response yet EV sales are lower than would be expected due to range anxiety. If a potential buyer cannot be assured of having constantly-available and compatible charging stations, they will not purchase an EV. To increase the sales of EVs through improved charger availability, this paper examines parking configurations, charger design, convenient “EV only” parking, free charging, etiquette in unplugging another’s vehicle, and legislation. Data were derived from academic publications, trade market press, conversations, personal observations, and laws. The results show that chargers are often in a lot’s corner and thus accessible only to one vehicle, EV owners leave their charged car in the space, drivers use EV spaces for parking, etiquette cards are not understood, and legislation makes it illegal to unplug another’s EV. Improvements include less convenient charger spots, an octopus charger in the middle of the parking lot, modest charging fees to foster turnover, chargers that indicate an EV is charged, education and legislation about etiquette cards, and legislation that allows an individual to unplug another’s charged EV. Improvements to charging should be implemented simultaneously to lessen range anxiety and realize the environmental benefits from reductions in gasoline consumption and mobile source air pollution.  相似文献   

8.
Electric vehicles (EV) are often considered a promising technology to decrease external costs of road transport. Therefore, main external cost components are estimated for EV and internal combustion engine vehicles (ICEV). These include costs of accidents, air pollution, climate change, noise, and congestion. All components are estimated over the product lifetime and, where appropriate, differentiated according to fuel type, vehicle size as well as emission location and time. The advantage of this differentiation is, however, compensated by high uncertainties of most cost estimates. Overall, the external costs of EV and ICEV do not differ significantly. Only for climate change, local air pollutants in congested inner-cities, and noise some advantageous effects can be observed for EV. The advantages depend strongly on the national electricity power plant portfolio and potentially also on the charging strategy. Controlled charging might allow for higher emission reductions than uncontrolled charging of EV.  相似文献   

9.
In suburban areas, combining the use of electric vehicles (EV) and transit systems in an EV Park-Charge-Ride (PCR) approach can potentially help improve transit accessibility, facilitate EV charging and adoption, and reduce the need for long-distance driving and ensuing impacts. Despite the anticipated growth of EV adoption and charging demand, PCR programs are limited. With a focus on multi-modal trips, this study proposes a generic planning process that integrates EV infrastructure development with transit systems, develops a systematic assessment approach to fostering the PCR adoption, and illustrates a case implementation in Chicago. Specifically, this study develops a Suitability Index (SI) for EV charging locations at parking spots that are suitable for both EV charging and transit connections. SI can be customized for short-term and long-term planning scenarios. SI values are derived in Chicago as an example for (1) commuter rail stations (for work trips), and (2) shopping centers near transit stops as potential opportunities for additional weekday parking and EV charging (for multi-purpose trips/MPT). Furthermore, carbon emissions and vehicle miles travelled (VMT) across various travel modes and trip scenarios (i.e., work trips and MPT) are calculated. Compared to the baseline of driving a conventional vehicle, this study found that an EV PCR commuter can reduce up to 87% of personal VMT and 52% of carbon emissions. A more active role of the public sector in the PCR program development is recommended.  相似文献   

10.
Policy makers are looking for effective ways to promote the adoption of electric vehicles (EVs). Among the options is the roll-out and management of charging infrastructure to meet the EV drivers’ refuelling needs. However, policies in this area do not only have a long-term effect on the adoption of EVs among prospective owners, they also have short-term impacts on the usage of public charging infrastructure among current EV owners and vice versa. Presently, studies focusing on both effects simultaneously are lacking, missing out on possible cross-pollination between these areas. This study uniquely combines stated and revealed preference data to estimate the effect of particular policy measures aimed at EV adoption, on the one hand, and charging behaviour, on the other. Using a large dataset (1.7 million charging sessions) related to charging behaviour using public charging infrastructure in the Netherlands we quantify the effects of (i) daytime-parking (to manage parking pressure) and (ii) free parking (to promote purchase of EVs) policies on charging behaviour. To estimate the effects of these particular policies on EV purchase intentions, a stated choice experiment was conducted among potential EV-buyers. Results show that cross-pollinations between EV charging and adaptation policies exist and should be taken into account when designing policies for EV adoption.  相似文献   

11.
Electrical vehicles (EVs) have become a popular green transportation means recently because they have lower energy consumption costs and produce less pollution. The success of EVs relies on technologies to extend their driving range, which can be achieved by the good deployment of EV recharging stations. This paper considers a special EV network composed of fixed routes for an EV fleet, where each EV moves along its own cyclic tour of depots. By setting up a recharging station on a depot, an EV can recharge its battery for no longer than a pre-specified duration constraint. We seek an optimal deployment of recharging stations and an optimal recharging schedule for each EV such that all EVs can continue their tours in the planning horizon with minimum total costs. To solve this difficult location problem, we first propose a mixed integer program (MIP) formulation and then derive four new valid inequalities to shorten the solution time. Eight MIP models, which were created by adding different combinations of the four valid inequalities to the basic model, have been implemented to test their individual effectiveness and synergy over twelve randomly generated EV networks. Valuable managerial insights into the usage of valid inequalities and the relations between the battery capacity and the total costs, number of recharging facilities to be installed, and running time are analyzed.  相似文献   

12.
In this paper, we present a case study on planning the locations of public electric vehicle (EV) charging stations in Beijing, China. Our objectives are to incorporate the local constraints of supply and demand on public EV charging stations into facility location models and to compare the optimal locations from three different location models. On the supply side, we analyse the institutional and spatial constraints in public charging infrastructure construction to select the potential sites. On the demand side, interviews with stakeholders are conducted and the ranking-type Delphi method is used when estimating the EV demand with aggregate data from municipal statistical yearbooks and the national census. With the estimated EV demand, we compare three classic facility location models – the set covering model, the maximal covering location model, and the p-median model – and we aim to provide policy-makers with a comprehensive analysis to better understand the effectiveness of these traditional models for locating EV charging facilities. Our results show that the p-median solutions are more effective than the other two models in the sense that the charging stations are closer to the communities with higher EV demand, and, therefore, the majority of EV users have more convenient access to the charging facilities. From the experiments of comparing only the p-median and the maximal covering location models, our results suggest that (1) the p-median model outperforms the maximal covering location model in terms of satisfying the other’s objective, and (2) when the number of charging stations to be built is large, or when minor change is required, the solutions to both models are more stable as p increases.  相似文献   

13.
14.
Incentives to buy and use electric vehicles (EVs) may influence individuals’ decisions to do so. To examine these impacts, a latent class discrete choice model is developed to analyse consumer preferences related to EV attributes and related government incentives. Data was collected from a stated preference survey of 1,076 residents of New South Wales (NSW), Australia. According to the results, the proposed latent constructs classify respondents into five segments. The segments are then used to distinguish respondent behaviours regarding EV attributes and related government incentives. The results show that rebate on the upfront cost of an EV is the most preferred one-off financial incentive, because EVs are expected to be expensive, especially in Australia which has a very small EV market at present. Furthermore, rebates on energy bills and parking fees are also well-received, as these things are expensive in Sydney, Australia. Thus, operational incentives for discounts on energy bills and parking fees may facilitate the success of EVs in NSW.  相似文献   

15.
The diffusion of electric vehicles (EVs) is studied in a two-sided market framework consisting of EVs on the one side and EV charging stations (EVCSs) on the other. A sequential game is introduced as a model for the interactions between an EVCS investor and EV consumers. A consumer chooses to purchase an EV or a conventional gasoline alternative based on the upfront costs of purchase, the future operating costs, and the availability of charging stations. The investor, on the other hand, maximizes his profit by deciding whether to build charging facilities at a set of potential EVCS sites or to defer his investments.The solution of the sequential game characterizes the EV-EVCS market equilibrium. The market solution is compared with that of a social planner who invests in EVCSs with the goal of maximizing the social welfare. It is shown that the market solution underinvests EVCSs, leading to slower EV diffusion. The effects of subsidies for EV purchase and EVCSs are also considered.  相似文献   

16.
The aim is to understand how private car drivers’ perception of vehicle attributes may affect their intention to adopt electric vehicles (EVs). Data are obtained from a national online survey of potential EV adopters in the UK. The results indicate that instrumental attributes are important largely because they are associated with other attributes derived from owning and using EVs, including pleasure of driving (hedonic attributes) and identity derived from owning and using EVs (symbolic attributes). People who believe that a pro-environmental self-identity fits with their self-image are more likely to have positive perceptions of EV attributes. Perceptions of EV attributes are only very weakly associated with car-authority identity.  相似文献   

17.
Electric vehicles (EVs) were recently reintroduced to the global car market. These are an improvement over their predecessors in performance and electric driving range. Although the uptake of EVs has been notable in a short period of time, most government goals for adoption have not been met. This paper reviews a growing body of peer-reviewed literature assessing factors affecting EV adoption. Several important gaps in knowledge are identified. First, there is mixed evidence of the effectiveness of government incentives in encouraging EV uptake and particularly little knowledge in regards to issues of timing and magnitude. The literature shows that public charging infrastructure is an important factor associated with EV uptake, though the direction of causality is yet unclear. Public charging infrastructure can ease range anxiety, particularly for battery electric vehicles, but there is little guidance as to the way in which government should best go about ensuring the provision of infrastructure. Lastly, the nascent EV market means that studies primarily rely on surveys about hypothetical situations. There is strong evidence that actual purchases are much lower than consumers’ stated preferences. Improving understanding of this “attitude–action” gap is important to better informing studies of EV uptake over time.  相似文献   

18.
The transportation sector is undergoing three revolutions: shared mobility, autonomous driving, and electrification. When planning the charging infrastructure for electric vehicles, it is critical to consider the potential interactions and synergies among these three emerging systems. This study proposes a framework to optimize charging infrastructure development for increasing electric vehicle (EV) adoption in systems with different levels of autonomous vehicle adoption and ride sharing participation. The proposed model also accounts for the pre-existing charging infrastructure, vehicle queuing at the charging stations, and the trade-offs between building new charging stations and expanding existing ones with more charging ports.Using New York City (NYC) taxis as a case study, we evaluated the optimum charging station configurations for three EV adoption pathways. The pathways include EV adoption in a 1) traditional fleet (non-autonomous vehicles without ride sharing), 2) future fleet (fully autonomous vehicles with ride sharing), and 3) switch-over from traditional to future fleet. Our results show that, EV adoption in a traditional fleet requires charging infrastructure with fewer stations that each has more charging ports, compared to the future fleet which benefits from having more scattered charging stations. Charging will only reduce the service level by 2% for a future fleet with 100% EV adoption. EV adoption can reduce CO2 emissions of NYC taxis by up to 861 Tones/day for the future fleet and 1100 Tones/day for the traditional fleet.  相似文献   

19.
The benefit of eco-driving of electric vehicles (EVs) has been studied with the promising connected vehicle (i.e. V2X) technology in recent years. Whereas, it is still in doubt that how traffic signal control affects EV energy consumption. Therefore, it is necessary to explore the interactions between the traffic signal control and EV energy consumption. This research aims at studying the energy efficiency and traffic mobility of the EV system under V2X environment. An optimization model is proposed to meet both operation and energy efficiency for an EV transportation system with both connected EVs (CEVs) and non-CEVs. For CEVs, a stage-wise approximation model is implemented to provide an optimal speed control strategy. Non-CEVs obey a car-following rule suggested by the well-known Intelligent Driver Model (IDM) to achieve eco-driving. The eco-driving EV system is then integrated with signal control and a bi-objective and multi-stage optimization problem is formulated. For such a large-scale problem, a hybrid intelligent algorithm merging genetic algorithm (GA) and particle swarm optimization (PSO) is implemented. At last, a validation case is performed on an arterial with four intersections with different traffic demands. Results show that cycle-based signal control could improve both traffic mobility and energy saving of the EV system with eco-driving compared to a fixed signal timing plan. The total consumed energy decreases as the CEV penetration rate augments in general.  相似文献   

20.
Travel time is very critical for emergency response and emergency vehicle (EV) operations. Compared to ordinary vehicles (OVs), EVs are permitted to break conventional road rules to reach the destination within shorter time. However, very few previous studies address the travel time performance of EVs. This study obtained nearly 4-year EV travel time data in Northern Virginia (NOVA) region using 76,000 preemption records at signalized intersections. First, the special characteristics of EV travel time are explored in mean, median, standard deviation and also the distribution, which display largely different characteristics from that of OVs in previous studies. Second, a utility-based model is proposed to quantify the travel time performance of EVs. Third, this paper further investigates two important components of the utility model: benchmark travel time and standardized travel time. The mode of the distribution is chosen as benchmark travel time, and its nonlinear decreasing relationship with the link length is revealed. At the same time, the distribution of standardized travel time is fitted with different candidate distributions and Inv. Gaussian distribution is proved to be the most suitable one. Finally, to validate the proposed model, we implement the model in case studies to estimate link and route travel time performance. The results of route comparisons also show that the proposed model can support EV route choice and eventually improve EV service and operations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号