首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tavassoli  Ahmad  Mesbah  Mahmoud  Hickman  Mark 《Transportation》2020,47(5):2133-2156

This paper describes a practical automated procedure to calibrate and validate a transit assignment model. An optimization method based on particle swarm algorithm is adopted to minimize a defined error term. This error term which is based on the percentage of root mean square error and the mean absolute percent error encompasses deviation of model outputs from observations considering both segment level as well as the mode level and can be applied to a large scale network. This study is based on the frequency-based assignment model using the concept of optimal strategy while any transit assignment model can be used in the proposed methodological framework. Lastly, the model is validated using another weekday data. The proposed methodology uses automatic fare collection (AFC) data to estimate the origin–destination matrix. This study combines data from three sources: the general transit feed specification, AFC, and a strategic transport model from a large-scale multimodal public transport network. The South-East Queensland (SEQ) network in Australia is used as a case study. The AFC system in SEQ has voluminous and high quality data on passenger boardings and alightings across bus, rail and ferry modes. The results indicate that the proposed procedure can successfully develop a multi-modal transit assignment model at a large scale. Higher dispersions are seen for the bus mode, in contrast to rail and ferry modes. Furthermore, a comparison is made between the strategies used by passengers and the generated strategies by the model between each origin and destination to get more insights about the detailed behaviour of the model. Overall, the analysis indicates that the AFC data is a valuable and rich source in calibrating and validating a transit assignment model.

  相似文献   

2.
Ridership estimation is a critical step in the planning of a new transit route or change in service. Very often, when a new transit route is introduced, the existing routes will be modified, vehicle capacities changed, or service headways adjusted. This has made ridership forecasts for the new, existing, and modified routes challenging. This paper proposes and demonstrates a procedure that forecasts the ridership of all transit routes along a corridor when a new bus rapid transit (BRT) service is introduced and existing regular bus services are adjusted. The procedure uses demographic data along the corridor, a recent origin–destination survey data, and new and existing transit service features as inputs. It consists of two stages of transit assignment. In the first stage, a transit assignment is performed with the existing transit demand on the proposed BRT and existing bus routes, so that adjustments to the existing bus services can be identified. This transit assignment is performed iteratively until there is no adjustment in transit services. In the second stage, the transit assignment is carried out with the new BRT and adjusted regular bus services, but incorporates a potential growth in ridership because of the new BRT service. The final outputs of the procedure are ridership for all routes and route segments, boarding and alighting volumes at all stops, and a stop‐by‐stop trip matrix. The proposed ridership estimation procedure is applicable to a new BRT route with and without competing regular bus routes and with BRT vehicles traveling in dedicated lanes or in mixed traffic. The application of the proposed procedure is demonstrated via a case study along the Alameda Corridor in El Paso, Texas. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
The recent volatility in gasoline prices and the economic downturn have made the management of public transportation systems particularly challenging. Accurate forecasts of ridership are necessary for the planning and operation of transit services. In this paper, monthly ridership of the Metropolitan Tulsa Transit Authority is analyzed to identify the relevant factors that influence transit use. Alternative forecasting models are also developed and evaluated based on these factors—using regression analysis (with autoregressive error correction), neural networks, and ARIMA models—to predict transit ridership. It is found that a simple combination of these forecasting methodologies yields greater forecast accuracy than the individual models separately. Finally, a scenario analysis is conducted to assess the impact of transit policies on long-term ridership.  相似文献   

4.
This paper addresses the impacts of different scheduling alternatives for a branching transit route. It examines different schedule alternatives that might be used to optimize the route performance in terms of the passenger traveling time distributed among branch passengers and trunk‐line passengers. The schedule alternatives considered include transit vehicle allocation to different branches, offset shifting across vehicles on different branches, and vehicle holding (slack time) in the transit vehicle schedule. With these variables, several vehicle schedules are devised and examined based on a wide variety of possible passenger boarding scenarios using deterministic service models. Test outcomes provide general conclusions about the performance of the strategies. Vehicle assignment leading to even headways among branches is generally preferred for the case of low passenger demand. However, when passenger demand is high, or the differences between the passenger demands on branches are significant, unequal vehicle assignment will be helpful to improve the overall route performance. Holding, as a proactive strategy in scheduling, has the potential to be embedded into the schedule as a type of slack time, but needs further evidence and study to determine the full set of conditions where it may be beneficial. Offset shifting does not show sufficient evidence to be an efficient strategy to improve route performance in the case of low or high passenger demand.  相似文献   

5.
In this paper, we develop an analytical model that aids decision-makers in designing a hybrid grid network that integrates a flexible demand responsive service with a fixed route service. The objective of the model is to determine the optimal number of zones in an area where each zone is served by a number of on-demand vehicles. The function of the on-demand vehicles is to transfer passengers to a fixed route line if the destination is to a different zone or to its final destination if it is within the same zone.  相似文献   

6.
This paper explores how the selection of public transit modes can be optimized over a planning horizon. This conceptual analysis sacrifices geographic detail in order to better highlight the relations among important factors. First, a set of static models is proposed to identify which type of service, e.g., bus only, rail only, or bus and rail, is the most cost-effective in terms of the average trip cost for given demand. After analyzing essential factors in a long-term planning process, e.g., economies of scale in rail extension and future cost discounting, a dynamic model incorporating such considerations is formulated to optimize the decision over a planning horizon. While analytical solutions can be obtained for some decision variables, the final model is solved with a graphical method by exploring the tradeoffs between the initial and recurring costs. Major findings from this study include: (a) there exists a minimum economic length for a rail line, which can be determined numerically; (b) economies of scale favor large extensions and excess supplied capacity; (c) the rail-only service is largely dominated by the feeder-trunk service, even in the long run.  相似文献   

7.
An optimization model for station locations for an on-ground rail transit line is developed using different objective functions of demand and cost as both influence the planning of a rail transit alignment. A microscopic analysis is performed to develop a rail transit alignment in a given corridor considering a many-to-one travel demand pattern. A variable demand case is considered as it replicates a realistic scenario for planning a rail transit line. A Genetic Algorithm (GA) based on a Geographical Information System (GIS) database is developed to optimize the station locations for a rail transit alignment. The first objective is to minimize the total system cost per person, which is a function of user cost, operator cost, and location cost. The second objective is to maximize the ridership or the service coverage of the rail transit alignment. The user cost per person is minimized separately as the third objective because the user cost is one of the most important decision-making factors for planning a transit system from the users’ perspective. A transit planner can make an informed decision between various alternatives based on the results obtained using different objective functions. The model is applied in a case study in the Washington, DC area. The optimal locations and sequence of stations obtained using the three objective functions are presented and a comparative study between the results obtained is shown in the paper. In future works we will develop a combinatorial optimization problem using the aforementioned objectives for the rail transit alignment planning and design problem.  相似文献   

8.
Reliability of a public transport operation is known to be an important measure of level-of-service for its patrons. It has been suggested that the reliability of a transit operation may be increased by regulating transit vehicles at various checkpoints to improve the schedule adherence of vehicles. It is possible to analyse changes in vehicle performance when checkpoint control strategies are introduced, as well as measure changes in level-of-service from the patrons' point of view, by using the TRAMS package to simulate the operation of a transit network. The simulation observations can also be used to determine optimum checkpoint control strategies.  相似文献   

9.
We present a transit equilibrium model in which boarding decisions are stochastic. The model incorporates congestion, reflected in higher waiting times at bus stops and increasing in-vehicle travel time. The stochastic behavior of passengers is introduced through a probability for passengers to choose boarding a specific bus of a certain service. The modeling approach generates a stochastic common-lines problem, in which every line has a chance to be chosen by each passenger. The formulation is a generalization of deterministic transit assignment models where passengers are assumed to travel according to shortest hyperpaths. We prove existence of equilibrium in the simplified case of parallel lines (stochastic common-lines problem) and provide a formulation for a more general network problem (stochastic transit equilibrium). The resulting waiting time and network load expressions are validated through simulation. An algorithm to solve the general stochastic transit equilibrium is proposed and applied to a sample network; the algorithm works well and generates consistent results when considering the stochastic nature of the decisions, which motivates the implementation of the methodology on a real-size network case as the next step of this research.  相似文献   

10.
The purpose of this paper is to investigate the net incidence of government subsidies to a transit system (i.e., the net impact of who pays and who benefits from transit subsidies). Rather than considering the U.S. transit subsidy program in the aggregate, the net incidence of subsidies to a particular transit system — Tidewater Regional Transit (TRT) — is analyzed. The paper concludes that the net incidence of the TRT subsidy program is progressive. Furthermore, the paper provides a methodology that can be used for investigating the net incidence of government subsidies to other transit systems.  相似文献   

11.
Every multiservice transit firm faces the problem of determining the share of the firm's costs to be borne by each service. A standalone-cost costing methodology for determining such cost shares is proposed. This costing methodology may also be used to investigate the cost efficiency or inefficiency of a multiservice transit firm. The applicability of the methodology is demonstrated in applying it to a multiservice public transit firm, the Tidewater Transportation District Commission, by estimating standalone costs using a statistical cost function for the organization. In addition to multiservice transit firms, the methodology may also be applied to any type of multiservice transportation firm.  相似文献   

12.
Bus rapid transit systems: a comparative assessment   总被引:1,自引:0,他引:1  
There is renewed interest in many developing and developed countries in finding ways of providing efficient and effective public transport that does not come with a high price tag. An increasing number of nations are asking the question—what type of public transport system can deliver value for money? Although light rail has often been promoted as a popular ‘solution’, there has been progressively emerging an attractive alternative in the form of bus rapid transit (BRT). BRT is a system operating on its own right-of-way either as a full BRT with high quality interchanges, integrated smart card fare payment and efficient throughput of passengers alighting and boarding at bus stations; or as a system with some amount of dedicated right-of-way (light BRT) and lesser integration of service and fares. The notion that buses essentially operate in a constrained service environment under a mixed traffic regime and that trains have privileged dedicated right-of-way, is no longer the only sustainable and valid proposition. This paper evaluates the status of 44 BRT systems in operation throughout the world as a way of identifying the capability of moving substantial numbers of passengers, using infrastructure whose costs overall and per kilometre are extremely attractive. When ongoing lifecycle costs (operations and maintenance) are taken into account, the costs of providing high capacity integrated BRT systems are an attractive option in many contexts.  相似文献   

13.
Abstract

Recent developments in the light rapid transit sector have introduced transit modes that are attempting to imitate the performance of others, e.g. buses with tram-like characteristics. The boundaries between existing definitions of what is a bus, tram or train are becoming blurred. For transport studies and practice this requires a review of how we define modes. This is not just a matter of semantics, but has safety and competition regulation implications for system operators. This paper proposes a structure to produce rail- and bus-based transit mode definitions and typology that are appropriate for modern use. A decision tree is used to classify and define the transit modes as guided-bus, trolley-bus, light rail and tram-train and is provided with example systems. The paper provides a robust definitional framework that allows transit system promoters, operators and other interested parties to have a consistent basis of reference when specifying and comparing rapid transit systems.  相似文献   

14.
This paper studies public transport demand by estimating a system of equations for multimodal transit systems where different modes may act competitively or cooperatively. Using data from Athens, Greece, we explicitly correct for higher-order serial correlation in the error terms and investigate two, largely overlooked, questions in the transit literature; first, whether a varying fare structure in a multimodal transit system affects demand and, second, what the determinants of ticket versus travelcard sales may be. Model estimation results suggest that the effect of fare type on ridership levels in a multimodal system varies by mode and by relative ticket to travelcard prices. Further, regardless of competition or cooperation between modes, fare increases will have limited effects on ridership, but the magnitude of these effects does depend on the relative ticket to travelcard prices. Finally, incorrectly assuming serial independence for the error terms during model estimation could yield upward or downward biased parameters and hence result in incorrect inferences and policy recommendations.  相似文献   

15.
Schmitt  Lorelei  Delbosc  Alexa  Currie  Graham 《Transportation》2019,46(3):1033-1049
Transportation - Travel behavior change has become an area of interest in many cities around the world, particularly to encourage people to change from car use to transit use. Previous research...  相似文献   

16.
Although efficiency and productivity are closely related issues, they have been generally examined separately in the transit literature. Using an extensive panel data set, this analysis extends prior research in two directions. First, efficiency rankings and efficient subsets of transit systems are obtained through data envelopment analysis (DEA), a non-parametric linear programming based methodology. Second, based on the results of the DEA analysis, globally efficient frontier production functions, in the context of transit operations in the United States, are built. The results indicate that when jointly considered, there is an improvement on both the theoretical and empirical aspects of examining efficiency and production in transit systems. Further, the results indicate that efficiency and returns to scale findings differ substantially depending on the evaluation methodology used.  相似文献   

17.
This paper proposes an analytical model for investigating transit technology selection problem from a perspective of transit authority. Given a transit technology alternative (e.g., metro, light rail transit, or bus rapid transit), the proposed model aims to maximize the social welfare of the transit system by determining the optimal combination of transit line length, number of stations, station location (or spacing), headway, and fare. In the proposed model, the effects of passenger demand elasticity and capacity constraint are explicitly considered. The properties of the model are examined analytically, and a heuristic solution procedure for determining the model solution is presented. By comparing the optimized social welfare for different transit technology alternatives, the optimal transit technology solution can be obtained together with critical population density. On the basis of a simple population growth rate formula, optimal investment timing of a new transit technology can be estimated. The proposed methodology is illustrated in several Chinese cities. Insightful findings are reported on the interrelation among transit technology selection, population density, transit investment cost, and transit line parameter design as well as the comparison between social welfare maximization and profit maximization regimes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, a person-delay-based optimization method is proposed for an intelligent TSP logic that enables bus/signal cooperation and coordination among consecutive signals under the Connected Vehicle environment. This TSP logic, called TSPCV-C, provides a method to secure the mobility benefit generated by the intelligent TSP logic along a corridor so that the bus delay saved at an upstream intersection is not wasted at downstream intersections. The problem is formulated as a Binary Mixed Integer Linear Program (BMILP) which is solved by standard branch-and-bound method. Minimizing per person delay has been adopted as the criterion for the model. The TSPCV-C is also designed to be conditional. That is, TSP is granted only when the bus is behind schedule and the grant of TSP causes no extra total person delay.The logic developed in this research is evaluated using both analytical and microscopic traffic simulation approaches. Both analytical tests and simulation evaluations compared four scenarios: without TSP (NTSP), conventional TSP (CTSP), TSP with Connected Vehicle (TSPCV), and Coordinated TSP with Connected Vehicle (TSPCV-C). The measures of effectiveness used include bus delay and total travel time of all travelers. The performance of TSPCV-C is compared against conventional TSP (CTSP) under four congestion levels and five intersection spacing cases. The results show that the TSPCV-C greatly reduces bus delay at signalized intersection for all congestion levels and spacing cases considered. Although the TSPCV is not as efficient as TSPCV-C, it still demonstrates sizable improvement over CTSP. An analysis on the intersection spacing cases reveals that, as long as the intersections are not too closely spaced, TSPCV can produce a delay reduction up to 59%. Nevertheless, the mechanism of TSPCV-C is recommended for intersections that are spaced less than 0.5 mile away. Simulation based evaluation results show that the TSPCV-C logic reduces the bus delay between 55% and 75% compared to the conventional TSP. The range of improvement corresponding to the four different v/c ratios tested, which are 0.5, 0.7, 0.9 and 1.0, respectively. No statistically significant negative effects are observed except when the v/c ratio equals 1.0.  相似文献   

19.
The paper explores how the coordination of vehicle schedules in a public transit system affects generalized costs. We consider an idealized system that delivers its users to a common destination by requiring each to transfer from a feeder- to a trunk-line vehicle. Continuum models are used first to analyze cases in which the trunk-line vehicle schedule is given exogenously. We find that when feeder vehicles are dispatched in coordination with this exogenous trunk-line schedule, the reduction in user cost often outweighs the added cost to the feeder operation. In cases when the frequencies of trunk and feeder services can be established jointly, the models show that coordination can be Pareto improving, meaning that operator and user costs both diminish. Conditions that give rise to these cost savings are specified. Practical implications are discussed.  相似文献   

20.
Safe and reliable coupling and decoupling of cars from a moving train is feasible with further developments in linear motor propulsion and control of transit vehicles. This allows the last car of a train to decouple and stop at a station for a relative long dwell time, before it accelerates and is coupled to a following train. Controlled doors in front and rear of the transit vehicle permit passengers to walk through the train to the car which stops at their destination. A proposed transit system using these features is described and compared to Bombardier's Advanced Rapid Transit. Potential advantages are high schedule speed, uncrowded trains, smaller and more stations, low energy requirements and a smaller vehicle fleet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号