首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
First-order network flow models are coupled systems of differential equations which describe the build-up and dissipation of congestion along network road segments, known as link models. Models describing flows across network junctions, referred to as node models, play the role of the coupling between the link models and are responsible for capturing the propagation of traffic dynamics through the network. Node models are typically stated as optimization problems, so that the coupling between the link dynamics is not known explicitly. This renders network flow models analytically intractable. This paper examines the properties of node models for urban networks. Solutions to node models that are free of traffic holding, referred to as holding-free solutions, are formally defined and it is shown that flow maximization is only a sufficient condition for holding-free solutions. A simple greedy algorithm is shown to produce holding-free solutions while also respecting the invariance principle. Staging movements through nodes in a manner that prevents conflicting flows from proceeding through the nodes simultaneously is shown to simplify the node models considerably and promote unique solutions. The staging also models intersection capacities in a more realistic way by preventing unrealistically large flows when there is ample supply in the downstream and preventing artificial blocking when some of the downstream supplies are restricted.  相似文献   

2.
Node models for macroscopic simulation have attracted relatively little attention in the literature. Nevertheless, in dynamic network loading (DNL) models for congested road networks, node models are as important as the extensively studied link models. This paper provides an overview of macroscopic node models found in the literature, explaining both their contributions and shortcomings. A formulation defining a generic class of first order macroscopic node models is presented, satisfying a list of requirements necessary to produce node models with realistic, consistent results. Defining a specific node model instance of this class requires the specification of a supply constraint interaction rule and (optionally) node supply constraints. Following this theoretical discussion, specific macroscopic node model instances for unsignalized and signalized intersections are proposed. These models apply an oriented capacity proportional distribution of the available supply over the incoming links of a node. A computationally efficient algorithm to solve the node models exactly is included.  相似文献   

3.
In transportation and other types of facilities, various queues arise when the demands of service are higher than the supplies, and many point and fluid queue models have been proposed to study such queueing systems. However, there has been no unified approach to deriving such models, analyzing their relationships and properties, and extending them for networks. In this paper, we derive point queue models as limits of two link-based queueing model: the link transmission model and a link queue model. With two definitions for demand and supply of a point queue, we present four point queue models, four approximate models, and their discrete versions. We discuss the properties of these models, including equivalence, well-definedness, smoothness, and queue spillback, both analytically and with numerical examples. We then analytically solve Vickrey’s point queue model and stationary states in various models. We demonstrate that all existing point and fluid queue models in the literature are special cases of those derived from the link-based queueing models. Such a unified approach leads to systematic methods for studying the queueing process at a point facility and will also be helpful for studies on stochastic queues as well as networks of queues.  相似文献   

4.
The family of macroscopic node models which comply to a set of basic requirements is presented and analysed. Such models are required in macro-, mesoscopic traffic flow models, including dynamic network loading models for dynamic traffic assignment. Based on the behaviour of drivers approaching and passing through intersections, the model family is presented. The headway and the turn delay of vehicles are key variables. Having demand and supply as input creates a natural connection to macroscopic link models. Properties like the invariance principle and the conservation of turning fractions are satisfied. The inherent non-uniqueness is analysed by providing the complete set of feasible solutions. The node models proposed by Tampère et al. (2011), Flötteröd and Rohde (2011) and Gibb (2011) are members of the family. Furthermore, two new models are added to the family. Solution methods for all family members are presented, as well as a qualitative and quantitative comparison. Finally, an outlook for the future development of empirically verified models is given.  相似文献   

5.
Travel demand models typically use mainly objective modal attributes as explanatory variables. Nevertheless, it has been well known for many years that attitudes and perceptions also influence users’ behaviour. The use of hybrid discrete choice models constitutes a good alternative to incorporate the effect of subjective factors. We estimated hybrid models in a short-survey panel context for data among many alternatives. The paper analyses the results of applying these models to a real urban case study, and also proposes an approach to forecasting using these models. Our results show that hybrid models are clearly superior to even highly flexible traditional models that ignore the effect of subjective attitudes and perceptions.  相似文献   

6.
Count models are used for analyzing outcomes that can only take non-negative integer values with or without any pre-specified large upper limit. However, count models are typically considered to be different from random utility models such as the multinomial logit (MNL) model. In this paper, Generalized Extreme Value (GEV) models that are consistent with the Random Utility Maximization (RUM) framework and that subsume standard count models including Poisson, Geometric, Negative Binomial, Binomial, and Logarithmic models as special cases were developed. The ability of the Maximum Likelihood (ML) inference approach to retrieve the parameters of the resulting GEV count models was examined using synthetic data. The simulation results indicate that the ML estimation technique performs quite well in terms of recovering the true parameters of the proposed GEV count models. Also, the models developed were used to analyze the monthly telecommuting frequency decisions of workers. Overall, the empirical results demonstrate superior data fit and better predictive performance of the GEV models compared to standard count models.  相似文献   

7.
Car following models have been studied with many diverse approaches for decades. Nowadays, technological advances have significantly improved our traffic data collection capabilities. Conventional car following models rely on mathematical formulas and are derived from traffic flow theory; a property that often makes them more restrictive. On the other hand, data-driven approaches are more flexible and allow the incorporation of additional information to the model; however, they may not provide as much insight into traffic flow theory as the traditional models. In this research, an innovative methodological framework based on a data-driven approach is proposed for the estimation of car-following models, suitable for incorporation into microscopic traffic simulation models. An existing technique, i.e. locally weighted regression (loess), is defined through an optimization problem and is employed in a novel way. The proposed methodology is demonstrated using data collected from a sequence of instrumented vehicles in Naples, Italy. Gipps’ model, one of the most extensively used car-following models, is calibrated against the same data and used as a reference benchmark. Optimization issues are raised in both cases. The obtained results suggest that data-driven car-following models could be a promising research direction.  相似文献   

8.
We consider state-space specifications of autoregressive moving average models (ARMA) and structural time series models as a framework to formulate and estimate inspection and deterioration models for transportation infrastructure facilities. The framework provides a rigorous approach to exploit the abundance and breadth of condition data generated by advanced inspection technologies. From a managerial perspective, the framework is attractive because the ensuing models can be used to forecast infrastructure condition in a manner that is useful to support maintenance and repair optimization, and thus they constitute an alternative to Markovian transition probabilities. To illustrate the methodology, we develop performance models for asphalt pavements. Pressure and deflection measurements generated by pressure sensors and a falling weight deflectometer, respectively, are represented as manifestations of the pavement’s elasticity/load-bearing capacity. The numerical results highlight the advantages of the two classes of models; that is, ARMA models have superior data-fitting capabilities, while structural time series models are parsimonious and provide a framework to identify components, such as trend, seasonality and random errors. We use the numerical examples to show how the framework can accommodate missing values, and also to discuss how the results can be used to evaluate and select between inspection technologies.  相似文献   

9.
Atmospheric dispersion models based on the Gaussian line source formulation tend to give poor results for low wind speed and parallel wind directions. Certain dispersion models like HIWAY-2 have an inbuilt dispersion algorithm to adjust in such situations but no correction exists for mathematical based Gaussian dispersion models. We evaluate the performance of a hybrid model a mathematical model, to assess its suitability as an alternative to the Gaussian based models.  相似文献   

10.
In this paper we review freight forecasting models and current advances and needs with respect to data and model development. We then present a case study to suggest which models should be developed for the State of California in the US. We suggest several alternatives including an aggregate commodity flow model, a disaggregate regional logistics model and a hybrid regional logistics model with a truck touring model. We point out however, that the data requirements for the latter model would be extensive. In addition, the development of hybrid models, for example progress in the integration of regional logistics models with urban truck touring models, will introduce new problems such as reconciling the outputs of multiple models for consistency.  相似文献   

11.
A high fidelity cell based traffic simulation model (CELLSIM) has been developed for simulation of high volume of traffic at the regional level. Straightforward algorithms and efficient use of computational resources make the model suitable for real time traffic simulation. The model formulation uses concepts of cellular automata (CA) and car-following (CF) models, but is more detailed than CA models and has realistic acceleration and deceleration models for vehicles. A simple dual-regime constant acceleration model has been used that requires minimal calculation compared to detailed acceleration models used in CF models. CELLSIM is simpler than most CF models; a simplified car-following logic has been developed using preferred time headway. Like CA models, integer values are used to make the model run faster. Space is discretized in small intervals and a new concept of percent space occupancy (SOC) is used to measure traffic congestion. CELLSIM performs well in congested and non-congested traffic conditions. It has been validated comprehensively at the macroscopic and microscopic levels using two sets of field data. Comparison of field data and CELLSIM for trajectories, average speed, density and volume show very close agreement. Statistical comparison of macroscopic parameters with other CF models indicates that CELLSIM performs as good as detailed CF models. Stability analyses conducted using mild and severe disturbances indicate that CELLSIM performs well under both conditions.  相似文献   

12.
This paper presents a system of hierarchical rule-based models of trip generation and modal split. Travel attributes, like trip counts for different transportation modes and commute distance, are among the modeled variables. The proposed framework could be considered as an alternative for several modules of the traditional travel demand modeling approach, while providing travel attributes at the highly disaggregate level that can be also used in activity-based micro-simulation modeling systems. Nonetheless, the modeling framework of this study is not considered as a substitute for activity-based models. The explanatory variables set ranges from socio-economic and demographic attributes of the household to the built environment characteristics of the household residential location. Another important contribution of the study is a framework in which travel attributes are modeled in conjunction with each other and the interdependencies among them are postulated through a hierarchical system of models. All the models are developed using rule-based decision tree method. Moreover, the models developed in this study present a useful improvement in increasing the practicality and accuracy of the rule-based travel data simulation models.  相似文献   

13.
This paper presents a unified approach for improving travel demand models through the application and extension of supernetwork models of multi-dimensional travel choices. Proposed quite some time ago, supernetwork models solved to stochastic user equilibrium can provide a simultaneous solution to trip generation, distribution, mode choice, and assignment that is consistent with disaggregate models and predicts their aggregate effects. The extension to incorporate the time dimension through the use of dynamic equilibrium assignment methods is proposed as an enhancement that is necessary in order to produce realistic models. A variety of theoretical and practical problems are identified whose solution underlies implementation of this approach. Recommended future research includes improved algorithms for stochastic and dynamic equilibrium assignment, new methods for calibrating assignment models, and the use of Geographic Information Systems (GIS) technology for data and model management.  相似文献   

14.
This paper presents analytical models that describe the safety of unstructured and layered en route airspace designs. Here, ‘unstructured airspace’ refers to airspace designs that offer operators complete freedom in path planning, whereas ‘layered airspace’ refers to airspace concepts that utilize heading-altitude rules to vertically separate cruising aircraft based on their travel directions. With a focus on the intrinsic safety provided by an airspace design, the models compute instantaneous conflict counts as a function of traffic demand and airspace design parameters, such as traffic separation requirements and the permitted heading range per flight level. While previous studies have focused primarily on conflicts between cruising aircraft, the models presented here also take into account conflicts involving climbing and descending traffic. Fast-time simulation experiments used to validate the modeling approach indicate that the models estimate instantaneous conflict counts with high accuracy for both airspace designs. The simulation results also show that climbing and descending traffic caused the majority of conflicts for layered airspaces with a narrow heading range per flight level, highlighting the importance of including all aircraft flight phases for a comprehensive safety analysis. Because such trends could be accurately predicted by the three-dimensional models derived here, these analytical models can be used as tools for airspace design applications as they provide a detailed understanding of the relationships between the parameters that influence the safety of unstructured and layered airspace designs.  相似文献   

15.
ABSTRACT

The paper presents a critical review of the methodological approaches used in tour-based mode choice models within the activity-based modelling frameworks. Various components of the activity-based models, such as activity type choice, activity location choice, and activity duration have already matured significantly. However, the mode choice component is often simplified in many ways. Both trip-based and tour-based approaches are used in many cases. However, the tour-based approach is considered to be the most relevant to the activity-based modelling framework. This paper presents a synthesis of the strengths and weaknesses of existing tour-based mode choice models. The previous studies on tour-based mode choice models are grouped into seven categories, ranging from simplified main tour mode to complex dynamic discrete choice models. Besides, challenges with data-hungry models, simulation-based models and static models are discussed elaborately. In conclusion, it proposes a few methodological suggestions for researchers and practitioners for finding an appropriate mode choice modelling framework for activity-based models. In addition, the paper also provides a guideline on how to incorporate automated vehicles and Mobility-as-a-Service within the framework of tour-based mode choice models.  相似文献   

16.
The influence of accessibility to opportunities in trip generation continues to be debated in the specialised literature given its relevance to simulate phenomena such as induced demand. This article estimates multiple linear regression models (MLR), spatial autoregressive models (SAR), spatial autoregressive models in the error term (SEM) and spatially filtered Poisson regression models (SPO) to discover whether or not accessibility is a significant factor in trip generation using data from the urban area of Santander (Spain). The results obtained provide evidence which shows that, on an intraurban scale, more accessibility to opportunities decreases trip production in private vehicle for work purpose, whereas it increases trip production in other transport modes for non—mandatory purposes. For the correct interpretation of the estimated parameters it was important to consider the direct and indirect effects of the independent variables in the SAR production models. Finally, the validation of the models showed that the SAR and SEM models had a mean squared error slightly lower than the MLR models in predicting overall trip production. This was because the spatial models reduced the correlation of the residuals present in the MLR models. Furthermore, the SPO models performed better in validation mode than all the continuous models.  相似文献   

17.
The sharing of forecasts is vital to supply chain collaborative transportation management (CTM). Shipment forecasting is fundamental to CTM, and is essential to carrier tactical and operational planning processes such as network planning, routing, scheduling, and fleet planning and assignment. By applying and extending grey forecasting theory, this paper develops a series of shipment forecasting models for supply chain CTM. Grey time-series forecasting and grey systematic forecasting models are developed for shipment forecasting under different collaborative frameworks. This paper also integrates grey numbers with grey models for analyzing shipment forecasting under partial information sharing in CTM frameworks. An example of an integrated circuit (IC) supply chain and relevant data are provided. The proposed models yield more accurate prediction results than regression, autoregressive integrated moving average (ARIMA), and neural network models. Finally, numerical results indicate that as the degree of information sharing increases under CTM, carrier prediction accuracy increases. This paper demonstrates how the proposed forecasting models can be applied to the CTM system and provides the theoretical basis for the forecasting module developed for supply chain CTM.  相似文献   

18.
Regional travel models in the United States are clearly evolving from conventional models towards a new generation of more behaviorally realistic activity-based models. The new generation of regional travel demand models is characterized by three features: (1) an activity-based platform, that implies that modeled travel be derived within a general framework of the daily activities undertaken by households and persons, (2) a tour-based structure of travel where the tour is used as the basic unit of modeling travel instead of the elemental trip, and (3) micro-simulation modeling techniques that are applied at the fully-disaggregate level of persons and households, which convert activity and travel related choices from fractional-probability model outcomes into a series of discrete or “crisp” decisions.While the new generation of model has obvious conceptual advantages over the conventional four-step models, there are still numerous technical issues that have to be addressed as well as a better understanding of practical benefits should be achieved before the new generation of models can fully replace conventional models. The paper summarizes the recent successful experience in the development and application of activity-based demand models for Metropolitan Planning Organizations in the US. Moving activity-based approaches into practice is analyzed in a broad context of travel demand modeling market tendencies and policy implications.  相似文献   

19.
This work builds upon the thought that individuals allocate higher levels of importance to some particular features of the route, so called anchor points. Previous route choice models have either ignored the effects of anchor points (route-based models), or have given an exclusive attention to their effects and ignored the behavioral accuracy and practicality of these models (anchor-based models). In this work we argue that the consideration of both route-level attributes and anchor points would enhance the behavioral aspect of route choice models as well as their estimation and prediction abilities. Global Positioning System traces have been used to investigate the effect of bridges as anchor points for trips between Montreal and its Northern suburb, Laval. A classic Nested Logit and a nested Logit Kernel model have been estimated, in which interdependencies among routes crossing the same bridge are captured through the nested structure and the adopted factor analytic approach, respectively. A Metropolis–Hastings path-sampling algorithm is applied, for the first time, on a large road network with more than 40,000 nodes and 19,000 links to provide the consideration choice set. Estimates are then compared to three alternate models, representing route-based and anchor-based formulations; namely Path-Size Logit, Extended Path-Size Logit, and Independent Availability Logit models. Empirical results showed that the proposed nested structures with MH sampling provide better estimates and also perform better in the validation step with respect to comparative models. Findings underscore the importance of considering anchor points in conjunction with route level attributes in route choice decisions.  相似文献   

20.
The past decade has seen many new freight transport models for use in transport planning by public authorities. Some of these models have developed new concepts, such as logistics modules, inclusion of transshipments, storage and sourcing and the determination of shipment size. This paper provides a review of the European literature on freight transport models that operate at the national or international level and have been developed since 2004. The introduction of elements of logistics thinking is identified as a common theme in recently developed models, and further worked out. Furthermore, ideas on what might be the next key developments in freight transport modelling are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号