首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 218 毫秒
1.
在混凝土梁体裂缝分析的基础上,以弯曲裂缝和剪切斜裂缝为对象,建立在役混凝土梁桥裂缝状态评估的指标体系,并确定各评价指标的具体隶属度函数取值,然后应用模糊神经网络(FNN)方法进行裂缝状态评估的仿真分析,并通过几座混凝土梁桥的裂缝统计实例验证该方法的有效性.  相似文献   

2.
以某大跨度混凝土悬臂梁桥梁体开裂为背景,通过删除单元模拟混凝土裂缝,在开裂截面两侧节点间引入以非线性单元模拟裂缝开合效应的方法,建立了考虑混凝土开裂的三维实体有限元模型,讨论了不同开裂位置、裂缝形态对结构力学性能退化的影响,并与部分试验结果做了对比.结果表明:主梁静力刚度的降低主要由梁底横向开裂引起,考虑裂缝闭合效应能提高结构静力刚度50%,当混凝土开裂程度较轻时,现有仪器精度难以通过动力特性来识别结构损伤.  相似文献   

3.
箱梁开裂现象普遍,且该病害与箱梁过量下挠相互耦合,其作用机理较为复杂,评估箱梁过量下挠的难点在于箱梁裂后的刚度损伤评估。为了有效评估箱梁的裂后刚度,制作了大比例尺预应力混凝土连续箱梁模型,开展了反复荷载作用下的箱梁破坏性试验,基于模型试验测试的荷载挠度曲线直接建立刚度折减评估参数。研究结果表明:箱梁裂后开裂区域的刚度折减系数以加载位置为参考点,其余部位的刚度损伤沿箱梁纵向呈线性分布。建立了箱梁裂缝定量描述指标CD参数,基于统计分析建立了裂缝损伤因子与CD参数的关系。  相似文献   

4.
为了分析横向分段施工预应力混凝土斜箱梁(简称分段合成斜箱梁)与整体浇注预应力混凝土斜箱梁(简称整体浇注斜箱梁)极限承载能力差异,建立分段合成斜箱梁和整体浇注斜箱梁的两个大比例试验模型;在两个模型的关键截面布设应变和挠度测点,采集两者在分级加载试验过程的挠度、应变数据,观测混凝土开裂情况。对采集的数据整理分析,比较两者在加载过程中结构的开裂情况、极限承载能力大小和受力性能的差异。根据结构受力特点,提出分段合成斜箱梁极限承载力的有限元分析方法;应用有限元程序ANSYS对两个试验模型的极限承载能力进行分析,分别与试验结果进行比较,验证了有限元模型的准确。通过试验和有限元比较分析,结果表明分段合成斜箱梁跨中截面湿接缝的混凝土先于整体浇注斜箱梁混凝土开裂,整体浇注斜箱梁梁肋底部混凝土先于湿接缝对应位置的混凝土开裂,且前者的开裂荷载低于后者,但两者的极限承载力相差甚微,基本相等;通过有限元分析斜交角和抗弯抗扭刚度比两个参数,表明整体浇注斜箱梁的极限承载能力随着斜交角的增加而增大,随着抗弯抗扭刚度比的减小而增大,但增大幅度较小。  相似文献   

5.
预应力混凝土连续箱梁开裂后的刚度退化模型   总被引:5,自引:0,他引:5  
为了研究预应力混凝土连续箱梁开裂后的刚度退化规律,基于CB壳单元,采用层状模型模拟预应力混凝土结构;考虑加载和卸载效应及材料和几何双重非线性效应,有效地模拟了三跨连续斜交箱梁的开裂、屈服和失效全过程。基于非线性有限元分析,提出了一种预应力混凝土箱梁开裂后的刚度退化模型,由该模型计算了预应力混凝土箱梁开裂后的刚度折减量。结果表明:CB壳单元模型对于预应力混凝土箱梁的非线性分析有良好的适应性,对箱梁开裂后的使用性能评估有实际应用价值。  相似文献   

6.
为揭示混凝土梁桥剩余使用寿命的演化规律,在分析混凝土碳化及钢筋腐蚀过程的基础上,研究钢筋腐蚀对梁桥承载能力的影响,考虑钢筋和混凝土协同工作能力的降低,以混凝土梁桥达到承载能力极限作为剩余使用寿命的终结标准,提出了梁桥剩余使用寿命的预测模型。借助随机过程方法,得到混凝土梁桥中钢筋开始腐蚀、锈胀开裂以及达到承载能力极限时的钢筋腐蚀深度与剩余使用寿命之间的关系,并针对不同的使用环境分别建立了剩余使用寿命的表达式。结果表明,混凝土梁桥在使用10.07~10.97年后钢筋开始腐蚀;当钢筋腐蚀深度为0.047mm时,混凝土开裂,导致钢筋腐蚀速度加快;当钢筋腐蚀深度为1.591~1.595mm时,混凝土梁桥达到承载能力极限。  相似文献   

7.
为了研究预加力对预应力混凝土梁桥开裂梁体刚度效应的影响,以公路桥梁中常用的预应力混凝土小箱梁和T梁为研究对象,基于设计规范中开裂预应力混凝土受弯构件刚度计算原理,采用统计分析、室内试验梁和实桥试验相结合方法,分析开裂预应力混凝土梁受拉区预压应力与梁体短期抗弯刚度的关系。结果表明:小箱梁和T梁受拉区混凝土开裂后,随预加力在受拉区混凝土所产生预压应力的增大,开裂梁体短期抗弯刚度提高;对于开裂预应力混凝土梁桥,采用增设体外预应力钢束的加固方法进行加固,可以有效地提高梁体短期抗弯刚度,较好地抑制梁体受力裂缝的发展。  相似文献   

8.
为解决传统混凝土简支梁桥接缝多、易开裂、耐久性低等问题,提出一种新型预制超高性能混凝土(UHPC)π形梁桥结构。研究了超高性能混凝土π形梁桥的主梁形式,并与相同30 m跨径传统混凝土T形梁桥进行了对比,结果表明其自重仅为传统混凝土T形梁桥的47%。参考材料试验结果,取设计用UHPC受压本构关系为线弹性,受拉本构关系为理想弹塑性,并根据法国超高性能纤维配筋混凝土(UHPFRC)结构规范对π形梁进行承载能力极限状态及正常使用极限状态下的配筋设计。为探究超高性能混凝土π形梁的抗剪及抗弯性能,对2根1:2截面缩尺梁模型进行试验研究及非线性有限元分析。结果表明:超高性能混凝土π形梁桥的初裂应力及承载能力均满足工程要求;纵向配筋率的提高能够显著提高梁底纵向开裂应变,限制裂缝开展;按法国规范计算相应荷载下的裂缝宽度值大于试验测量值,理论计算偏安全;试验值与模拟值吻合较好,验证了ABAQUS损伤塑性模型中所取材料参数的准确性和适用性;受拉塑性参数中的极限拉应力对于模拟结果影响较大,需根据试验获得准确数值。  相似文献   

9.
为了研究PC桥梁裂缝统计参数对结构的影响,对国内某地区T梁桥的裂缝进行了调研分析,并按照相关规范对桥梁的开裂状况进行分类统计,确定了以裂缝位置、裂缝宽度和裂缝高度作为桥梁裂缝统计参数。根据所确定裂缝参数的敏感性分析,利用Midas/FEA建立了无损预应力混凝土结构与各裂缝统计参数下的有限元模型,分析了裂缝统计参数对结构刚度以及承载力的影响,得出了裂缝统计参数对T梁桥刚度及承载力影响权值。结果表明:裂缝的宽度和深度是影响PC桥梁承载力的主要因素。  相似文献   

10.
预应力混凝土梁桥的开裂使得结构安全性、适用性和耐久性降低,对于可靠性降低的桥梁有必要对其承载能力进行评定。主梁开裂会导致结构刚度降低,增加主梁下挠风险。同时,主梁下挠进一步加剧裂缝的产生和发展,降低主梁刚度,二者相互影响,形成恶性循环。在进行开裂后的主梁结构力学性能计算时,不可避免地会遇到开裂后主梁刚度的计算问题。计算主梁开裂后刚度时,目前常见的做法是将原结构构件的刚度按一定规则进行折减,并且整个构件采用统一的开裂后刚度值。这种做法往往与结构的实际刚度偏差较大,且结构在荷载作用下的效应误差亦较大。通过对开裂后主梁的裂缝特征参数进行统计,按照一定规则,将开裂后的主梁划分为若干个开裂区段,采用阶梯刚度简化计算方法分别求出每个开裂区段的有效刚度,形成阶梯刚度模式。阶梯刚度建立后,采用挠度分段积分的方法求出阶梯刚度下的荷载挠度。通过开裂后的PC梁加载试验,对阶梯刚度和阶梯刚度下的挠度计算结果进行了验证。结果表明:采用基于裂缝特征统计参数的阶梯刚度模式,更接近结构开裂后刚度的实际情况;基于阶梯刚度的挠度计算结果与试验挠度值吻合较好;与规范规定的开裂后主梁挠度计算方法相比,在未过分增加计算工作量的前提下,本方法的精度更高,更接近实际情况。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号