共查询到19条相似文献,搜索用时 62 毫秒
1.
2.
轮载横向分布对正交异性钢桥面板疲劳行为的影响研究 总被引:1,自引:0,他引:1
由于车辆轮载横向位置的离散性,在对正交异性钢桥面板进行疲劳验算时,采用单迹线加载方式求得的等效应力幅值较真实值偏大,而我国规范未就轮载横向分布对等效应力幅的折减作用做出明确规定。采用国内道路观测统计得出的轮载横向分布特征,建立了3种具有典型构造特征的正交异性钢桥面板有限元模型,研究了轮载横向作用位置对正交异性钢桥面板各构造细节应力循环特征的影响,依据Miner线性累积损伤准则,分析了轮载横向分布对等效应力幅的折减作用,得出了应力幅折减系数,建议取为0.85。 相似文献
3.
4.
为研究车轮横向分布对钢桥面板顶板-U肋连接处疲劳损伤的影响,以佛山平胜大桥为研究对象,通过数值模拟,计算各车型车轮荷载不同横向位置下顶板-U肋连接处的应力,采用英国规范BS5400计算该处的疲劳损伤度;建立车轮分布模型,计算车轮在车道不同位置的分布概率,提出考虑车轮横向分布的疲劳损伤计算方法。结果表明,顶板-U肋连接处的应力幅受车轮横向分布的影响范围较小,约为1.5 m,不必考虑多车效应;U肋损伤分布差异较大,U肋底板损伤比腹板损伤更严重;考虑车轮横向分布效应后,顶板-U肋连接处的疲劳寿命计算值提高69%,钢桥面板疲劳损伤分析中应考虑车轮的横向分布效应。 相似文献
5.
6.
为了解车轮荷载作用对正交异性钢桥面板典型疲劳细节的影响,以长门特大桥为背景,采用有限元法建立正交异性钢桥面板节段模型及易开裂部位的子模型,分析在不同横向荷载分布下3处典型疲劳细节受力及面内外变形,得到各细节最不利加载位置。对最不利位置进行加载,分析疲劳裂纹尖端应力强度因子变化规律,研究不同疲劳细节裂纹类型及扩展能力。结果表明:单轮荷载作用下,横隔板弧形缺口位置会发生面内外变形,顶板-U肋焊根处以面外变形为主,横隔板间的顶板-U肋焊缝焊根位置面外变形最大。在裂纹较短时,随着长度的增加,弧形缺口裂纹从张开型裂纹逐渐转向张开型、滑开型混合裂纹,且横隔板处的顶板-U肋焊根裂纹为复合型裂纹,横隔板间的顶板-U肋焊根裂纹为张开型裂纹。横隔板弧形缺口裂纹和顶板-U肋焊缝焊根裂纹的尖端应力强度因子的最大值,分别出现在裂纹长度为20 mm和40 mm附近,该处裂纹较容易继续扩展。 相似文献
7.
8.
9.
本文选取U肋与桥面板连接区域、U肋与横隔板交叉部位、U肋等细节,通过实桥静力试验,结合有限元模型分析,研究正交异性钢桥面板局部应力的大小和分布规律.结果表明:钢桥面板各关键构造细节的应力影响线都比较短,纵向应力主要受两个横隔板间距的影响,横向应力受与其相邻的两个U肋间距内荷载的影响;当车辆通过时,测点会出现多个应力循环;在U肋-横隔板连接焊缝附近,U肋腹板上的应力水平较高;横隔板弧形切口自由边缘两侧应力性质相反,一侧受压、一侧受拉,应力幅值较大,存在疲劳开裂隐患;因此设计中应该对构造细节进行详细研究分析,并注意焊接区域的细部设计与制造,避免疲劳开裂. 相似文献
10.
正交异性钢桥面板是大跨度桥梁结构主要桥面板形式.为深入研究车辆轮迹线位置对钢桥面板疲劳部位应力的影响,以纵肋与顶板双面焊焊接接头为研究对象,基于ANSYS有限元软件,选取三种典型疲劳车辆轮迹线加载形式,得到了该部位热点应力历程.车辆骑纵肋加载和纵肋间加载均具有较大的疲劳应力,设计时应将轮迹线尽量布置在纵肋正上方位置. 相似文献
11.
针对钢桥面铺装层容易出现疲劳开裂与车辙破坏的特点,提出采用4种有代表性的铺装层沥青混合料,通过应变控制模式下的四点弯曲疲劳试验方法,研究其疲劳特性以提高钢桥面铺装层的抗疲劳耐久特性和高温稳定性。通过多个应变水平下的疲劳试验,分析了沥青混合料劲度模量与改性沥青品质、疲劳寿命、滞后角的关系,验证了疲劳寿命与累积耗散能在双对数坐标下的线性关系,得出不同改性沥青混合料的疲劳曲线和疲劳方程。不同的铺装层材料很难建立相同的疲劳预测模型,只能根据直接的疲劳试验获得混合料的抗疲劳耐久特性。 相似文献
13.
14.
正交异性钢桥面板足尺疲劳试验 总被引:3,自引:0,他引:3
以某大跨径斜拉桥采用的正交异性钢桥面板为工程背景,进行钢桥面板疲劳性能试验研究,足尺疲劳试验循环次数累积达到1 020万次.试验结果表明:加劲肋与盖板连接部位出现了纵向疲劳裂纹;加劲肋与横隔板连接的焊缝端部出现了在焊趾处萌生并沿加劲肋腹板扩展的疲劳裂纹;受焊接残余应力影响,处于疲劳荷载压应力区的腹板与横隔板连接焊缝端部也萌生了疲劳裂纹;横隔板挖孔部位无疲劳裂纹;若以测点应力发生变化为疲劳失效判据,则加劲肋与横隔板连接端部的疲劳细节高于AASHTO中D类和Eurocode的63类细节等级,加劲肋与盖板连接的疲劳细节高于AASHTO中D类和Eurocode的71类细节等级;若以出现疲劳裂纹为疲劳失效判据,则其疲劳细节高于AASHTO规范中D类和Eurocode的80类细节等级. 相似文献
15.
正交异性钢桥面板的疲劳问题属于多疲劳失效模式下的结构体系疲劳问题,为研究其结构体系的疲劳失效模式和疲劳抗力,以典型的正交异性钢桥面板为研究对象,提出基于主导疲劳失效模式的结构体系疲劳抗力评估方法。由正交异性钢桥面板的重要疲劳失效模式入手,设计3组共8个足尺节段模型,通过疲劳试验研究确定纵肋与顶板焊接细节和纵肋与横隔板交叉构造细节的重要疲劳失效模式及其实际疲劳抗力;基于所提出的结构体系疲劳抗力评估方法,探讨引入镦边纵肋和双面焊等新型构造细节条件下正交异性钢桥面板结构体系的疲劳抗力问题。研究结果表明:纵肋与顶板焊接细节主导疲劳失效模式为疲劳裂纹萌生于焊根并沿顶板厚度方向扩展,而纵肋与横隔板交叉构造细节主导疲劳失效模式为疲劳裂纹萌生于端部焊趾并沿纵肋腹板扩展;初始制造缺陷会显著降低正交异性钢桥面板重要疲劳失效模式的疲劳抗力并导致疲劳失效模式迁移;对于正交异性钢桥面板的结构体系而言,引入新型镦边纵肋与顶板焊接细节无法提高结构体系的疲劳抗力;而引入纵肋与顶板新型双面焊细节,可使结构体系的主导疲劳失效模式迁移至顶板焊趾或纵肋与横隔板交叉构造细节,结构体系的疲劳抗力得到显著提高。 相似文献
16.
17.
18.
19.
对7块钢板-轻骨料混凝土空心组合桥面板和2块钢板-普通混凝土空心组合桥面板进行了疲劳试验研究,主要考察了疲劳荷载作用下组合板中钢管的布置形式、疲劳荷载幅值、疲劳荷载上下限、疲劳加载次数及混凝土材料特性5个关键因素对空心组合桥面板疲劳破坏形态、疲劳刚度退化、疲劳动力响应及疲劳强度等疲劳性能的影响。结果表明:2种钢管布置形式的空心组合桥面板的疲劳破坏形态都是底部钢板发生疲劳断裂导致整体失效破坏;组合桥面板疲劳循坏加载次数主要由疲劳荷载幅值控制,与疲劳荷载上限关系不明显;钢板-普通混凝土组合桥面板疲劳性能优于钢板-轻骨料混凝土组合桥面板;组合桥面板疲劳破坏主要是由于底部钢板疲劳断裂破坏所致,在组合桥面板中未发现组合桥面板组合作用的明显疲劳破坏现象;组合桥面板疲劳寿命计算主要为底部钢板疲劳强度计算,可以采用基于疲劳荷载幅值方法所建立的钢结构疲劳寿命理论进行计算。 相似文献