首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了提高地铁列车旅行速度,国内外都要求地铁列车的加速度不低于1.0 m/s2,减速度不低于1.1~1.2 m/s2.目前,我国新建地铁线路大都选用加减速度较大的4M2T编组列车,其 目的也是为 了提高列车旅行速度.但GB 50157-2013《地铁设计规范》规定列车牵引计算的起动加速度和制动减速度分别不宜大于最大加速度...  相似文献   

2.
两种速度地铁动车组混合开行的影响分析   总被引:3,自引:0,他引:3  
速度100km/h和120km/h的地铁动车组的逐步采用,将引起越行的发生,并对地铁线路的站点分布、能力的利用、不同速度动车组的旅行速度和开行数量比例等方面产生一定的影响。为此,研究了最小追踪间隔时间与最大站间距之间的关系,确定了较高速度动车组的开行比例范围,并讨论了较高速度动车组对能力的影响,以及较低速度动车组旅行速度的变化情况。  相似文献   

3.
地铁B型车牵引能耗与再生制动节能效果分析   总被引:1,自引:0,他引:1  
通过模拟列车运行速度曲线,分析列车的牵引耗电量和再生制动的节能效果;探讨地铁运营的节能措施,提高运营管理水平。通过对大量列车牵引计算图的分析,获得了地铁B2型车和B1型车日常运营的启动加速度、制动减速度、列车旅行速度、牵引耗电量、列车单位耗电量以及再生制动的节能效果;比较了运行速度由80 km/h提高到100 km/h的运行效果;探讨了地铁车辆选型的基本原则,对工程设计和运营管理具有一定的参考价值。  相似文献   

4.
关于6辆地铁列车编组的动车与拖车配置   总被引:2,自引:0,他引:2  
对6辆地铁列车编组三动三拖及四动两拖的配置进行综合比较,包括牵引及制动性能、旅行速度及车辆配置数、故障运行及救援能力、列车维修及车辆采购等,以供车辆选型时参考。  相似文献   

5.
地铁列车组动车配置对其性能的影响   总被引:2,自引:2,他引:0  
详细介绍了地铁列车组中动车所占比例不同对列车组牵引性能、常用电制动性能、轮轨间黏着系数和平均旅行速度的影响;67%动车编组和50%动车编组的轮轨间黏着系数利用相当,全动车编组和67%动车编组的最大起动加速度、最大常用电制动减速度、平均旅行速度相当;从平均旅行速度方面来考虑,最高运行速度在100km/h以下时,50%动车编组是一种比较经济合算的编组。  相似文献   

6.
研究移动闭塞条件下地铁列车的运行规律,建立地铁列车运行模型,将基于事件的控制技术应用到地铁列车控制中。引入运动参考变量,求出在以站间最小运行时间为目标的单列列车控制中,列车运行速度、加速度关于列车走行距离的表达式,根据列车走行距离实时调整规划列车的运行。研究移动闭塞条件下地铁列车间的控制,采用基于事件的控制技术和编队思想降低列车间的最小追踪允许间隔,在保证不撞车以及尽量减少站外停车的前提下,提高地铁线路的通过能力,并且能够方便地实现系统的重新配置以及各子系统间的协调协作。以相邻的3列列车运行为例,研究在移动闭塞条件下后续列车的控制策略,根据列车的走行距离以及前后列车间所要求保留的安全距离,动态调整列车的运行速度、加速度。仿真结果表明,运用基于事件的控制技术来控制列车的运行,可提高列车的正点率到95%。  相似文献   

7.
不同层次轨道交通间的直通运营具有减少乘客出行时间、节约土地资源等优势。该模式下,在直通区段上运行的不同层次或不同技术标准(如速度目标值、车辆制式等)的列车互称为异质列车。在分析车站追踪间隔计算原理及方法的基础上,将组合周期时间作为计算直通区段通过能力的主要依据,建立了直通区段通过能力计算模型,并运用回归分析方法得到不同站间距下列车速度目标值与旅行速度的相关关系。研究表明:直通区段通过能力与异质列车的速度目标值组合具有相关性。在部分参数取值给定的条件下,随着两种异质列车速度目标值差值的增大,直通区段通过能力有所减小。  相似文献   

8.
目前移动闭塞制式已经成为地铁信号系统的发展方向,但移动闭塞制式还处于开发阶段,部分地铁运营的初期常使用后备模式开通,因此后备模式的追踪能力对地铁的初期运营有一定影响.简要分析了后备模式下,4种计轴布置方式的列车追踪能力.  相似文献   

9.
地铁列车牵引计算往往沿用铁路列车的牵引计算方法,忽略了地铁车辆对控制加速度的"缓变式"处理过程,给牵引计算的控制加速度、速度和运行时间计算带来偏差。给出了考虑冲击限制情况下,地铁列车最大能力运行及节能运行时的牵引计算算法,并采用实际列车和线路数据对算法进行了验证。计算结果表明,考虑冲击限制的地铁列车牵引计算算法可以提高牵引计算中列车速度、加速度和时间的仿真精度,使速度和加速度的仿真计算结果更符合地铁列车运行实际,区间运行时间的计算精度可提高2%以上。  相似文献   

10.
通过对列车运行图结构分析,在确定旅客列车会车区和越行停留时间基础上,分别对不同等级反向列车产生的会车次数进行深入研究;运用列车组和价结构理论,对不同等级反向列车与不同正向列车组组合的情况下,对能力的影响进行分析。建立反向列车对正向线路通过能力和列车旅行速度影响的数学模型,分析其影响规律,认为铁路双线区段组织反向行车对线路通过能力和列车旅行速度都会产生一定的负面影响,并随列车开行数量和区间运行时间等影响因素的增加而增大。  相似文献   

11.
基于移动闭塞原理的地铁列车线路通过能力的研究   总被引:3,自引:1,他引:2  
总结在移动闭塞的条件下地铁列车线路通过能力的计算方法,提出通常构成线路通过能力的3个方面,即区间追踪能力、中间站通过能力及折返站折返能力.给出区间追踪能力和中间站通过能力的计算模型,最后探讨折返站的种类及折返能力,提出如何降低列车的行车间隔,从而提高线路的通过能力.  相似文献   

12.
快捷式地铁系统是将车站设计在地面上,车站与车站之间用浅埋地下隧道相连接的一种城市交通方式。快捷式地铁使乘客乘车更加方便,列车的旅行速度较高,且系统建设和运营成本低于传统式地铁。对快捷式地铁系统的特点进行分析,探讨这种快速运输系统的技术及经济性。  相似文献   

13.
为验证不同速度等级、不同列车长度下的点式列车自动控制(ATC)系统是否能够满足城市轨道交通的运营能力需求,依据点式ATC系统特点及信号系统设计的相关要求,推出列车在区间和车站最小追踪间隔的计算模型,并根据计算模型给出了能力影响因素,得出最小追踪间隔与最高运行速度及列车长度之间的关系。通过仿真计算,得出不同速度等级、不同长度下列车运行的最小追踪间隔,验证了计算模型的合理性,并给出了不同速度等级及列车长度下点式ATC系统的适用情况。  相似文献   

14.
在客货混跑的单线铁路区段存在着会车等多种影响列车旅行速度的因素,通过分析不同速度列车间在行车过程中相互影响关系,并基于概率论研究这些作业对不同种类列车旅行速度的影响状况,提出在不同速度列车共同运行状态下的列车旅行速度计算方法,该方法可以计算在不同种类列车会车作业对列车旅行速度的影响(仅讨论会车),所得结果能够代表单线铁路列车运行特点,可以作为无统计信息情况下(如铁路设计、改造等)的旅行速度方面的数据参考。  相似文献   

15.
提速200km/h的客货混跑线路,客货列车的速差增大,影响旅客列车的扣除系数和货物列车的通过能力。为弥补旅客列车提速对货物列车通过能力的影响,以旅客列车扣除系数为立足点,分析单列旅客列车、多列旅客列车扣除系数的变化,提出了压缩追踪列车间隔时间,提高货物列车的运行速度,旅客列车采用小间隔多列追踪运行等措施,以提高货物列车的通过能力。  相似文献   

16.
为了实现城市轨道交通的节能运行,提出基于目标速度追踪的城轨列车节能优化算法。首先构建列车均质棒动力学模型和节能优化目标函数,利用极大值原理推导出列车节能运行工况。然后重点分析列车运行时间和运行方式对能耗的影响。在对典型方案仿真分析的基础上,提出通过陡坡时的基于等效平均速度法的运行策略,以及目标速度改变时合理利用惰行的运行策略。最后通过目标速度追踪的方法得到速度曲线,实现城轨列车的节能运行。利用上海地铁3号线的数据对本文提出的算法进行验证,结果表明相较实际运行情况,本文提出的算法可以降低25.39%的运行能耗,同时求解得到的速度曲线更加平缓,更适合城市轨道交通的实际运行情况。  相似文献   

17.
高速列车及其速度目标值的探讨   总被引:7,自引:3,他引:4  
根据铁路运输高速化的发展趋势,初步分析了旅行速度、票价、运输管理、高速列车等因素和速度目标值的关系。提出高速列车是影响速度目标值的关键问题。从高速列车的牵引、能耗、制动能力和噪音方面对轮轨方式和磁悬浮方式的高速列车按不同速度目标值进行分析比较。以正在设计中的京沪高速铁路为例,在京沪高速列车运行仿真研究的基础上,按直达方式和沿线停站方式,对不同速度目标值的地面干线运输系统其旅行时间和能耗的经济问题进行简要的计算对比。提出选择我国高速铁路速度目标值的建议。  相似文献   

18.
列车速度联控行车制理论分析   总被引:3,自引:1,他引:2  
朱松年  宋瑞 《铁道学报》1997,19(6):10-16
对“列车速度联控”行车制进行了理论分析。重点探讨了列车追踪运行间隔、列车追踪到达及出发间隔以及通过能力的分析计算。认为这一行车制式确能大幅度提高铁路线路的通过能力,值得进一步研究、试验。  相似文献   

19.
市域快线与地铁过轨运营条件下,对过轨区段内的通过能力进行分析计算至关重要。文章结合列车最小追踪间隔时间,将列车在区段内的实际运行过程,等效看作以平均运行速度不间断运行,构建区段等效运行线,基于此,提出过轨区段通过能力计算方法。以沈铁市域快线与沈阳地铁 K2 线的过轨运营为例进行分析,研究表明:过轨列车开行数量越多区段能力损失越大,在给定参数下,单一方向能力损失最高可达22 列;不同制式列车的速度差越小,区段能力损失也越小,以共速运行时,区段能力仅损失 4 列,此时过轨列车扣除系数位于 1.0~1.5 之间。相关结论可为沈铁市域快线过轨运营行车组织提供参考,同时为其他城市轨道系统的过轨运营提供案例借鉴。  相似文献   

20.
《都市快轨交通》2009,(4):53-53
韩国为解决首都圈交通困难问题,正在推进地下40-50m深层高速地铁(又名“大深度地铁”)的建设。这条地铁是比已有地铁快3倍以上的交通工具,从首尔江南区到一山来回只需22min。一列车可以载运920名乘客,相当于6辆电车承载的数量之和。旅行速度(包括到站停车时间的平均速度)为时速120km,最高时速为200km,有望创世界最高速度地铁纪录。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号