首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vehicle steering dynamics show resonances, which depend on the longitudinal speed, unstable equilibrium points and limited stability regions depending on the constant steering wheel angle, longitudinal speed and car parameters.

The main contribution of this paper is to show that a combined decentralized proportional active front steering control and proportional-integral active rear steering control from the yaw rate tracking error can assign the eigenvalues of the linearised single track steering dynamics, without lateral speed measurements, using a standard single track car model with nonlinear tire characteristics and a non-linear first-order reference model for the yaw rate dynamics driven by the driver steering wheel input. By choosing a suitable nonlinear reference model it is shown that the responses to driver step inputs tend to zero (or reduced) lateral speed for any value of longitudinal speed: in this case the resulting controlled vehicle static gain from driver input to yaw rate differs from the uncontrolled one at higher speed. The closed loop system shows the advantages of both active front and rear steering control: higher controllability, enlarged bandwidth for the yaw rate dynamics, suppressed resonances, new stable cornering manoeuvres, enlarged stability regions, reduced lateral speed and improved manoeuvrability; in addition comfort is improved since the phase lag between lateral acceleration and yaw rate is reduced.

For the designed control law a robustness analysis is presented with respect to system failures, driver step inputs and critical car parameters such as mass, moment of inertia and front and rear cornering stiffness coefficients. Several simulations are carried out on a higher order experimentally validated nonlinear dynamical model to confirm the analysis and to explore the robustness with respect to unmodelled dynamics.  相似文献   

2.
This paper shows that, for a four-wheel steering vehicle, a proportional-integral (PI) active front steering control and a PI active rear steering control from the yaw rate error together with an additive feedforward reference signal for the vehicle sideslip angle can asymptotically decouple the lateral velocity and the yaw rate dynamics; that is the control can set arbitrary steady state values for lateral speed and yaw rate at any longitudinal speed. Moreover, the PI controls can suppress oscillatory behaviours by assigning real stable eigenvalues to a widely used linearised model of the vehicle steering dynamics for any value of longitudinal speed in understeering vehicles. In particular, the four PI control parameters are explicitly expressed in terms of the three real eigenvalues to be assigned. No lateral acceleration and no lateral speed measurements are required. The controlled system maintains the well-known advantages of both front and rear active steering controls: higher controllability, enlarged bandwidth for the yaw rate dynamics, suppressed resonances, new stable cornering manoeuvres and improved manoeuvrability. In particular, zero lateral speed may be asymptotically achieved while controlling the yaw rate: in this case comfort is improved since the phase lag between lateral acceleration and yaw rate is reduced. Also zero yaw rate can be asymptotically achieved: in this case additional stable manoeuvres are obtained in obstacle avoidance. Several simulations, including step references and moose tests, are carried out on a standard small SUV CarSim model to explore the robustness with respect to unmodelled effects such as combined lateral and longitudinal tyre forces, pitch, roll and driver dynamics. The simulations confirm the decoupling between the lateral velocity and the yaw rate and show the advantages obtained by the proposed control: reduced lateral speed or reduced yaw rate, suppressed oscillations and new stable manoeuvres.  相似文献   

3.
Additional 4WS and Driver Interaction   总被引:1,自引:0,他引:1  
This investigation is based on a complex 4-wheel vehicle model of a passenger car that includes steering system and drive train. The tyre properties are described for all possible combined longitudinal and lateral slip values and for arbitrary friction conditions. The active part is an additional steering system of all 4 wheels, additionally to the driver's steering wheel angle input. Three control levels are used for the driver model that thereby can follow a given trajectory or avoid an obstacle.

The feedback control of the additional 4 wheel steering is based on an observer which can also have adaptive characteristics. Moreover a virtual vehicle model in a feedforward scheme can provide desired steering characteristics.

To get information for critical situations a cornering manoeuvre with sudden u-split conditions is simulated. Further a similar manoeuvre is used to evaluate the reentry in a high friction area from low friction conditions. And finally the performance of the controller is shown in a severe lane change manoeuvre.  相似文献   

4.
In this paper, we examine the lateral dynamics emulation capabilities of an automotive vehicle equipped with four-wheel steering. We first demonstrate that the lateral dynamics of a wide range of vehicles can be emulated, either with little or with no modification on the test vehicle. Then we discuss a sliding mode controller for active front and rear wheel steering, in order to track some given yaw rate and side-slip angle. Analytically, it is shown that the proposed controller is robust to plant parameter variations by±10%, and is invariant to unmeasurable wind disturbance. The performance of the sliding mode controller is evaluated via computer simulations to verify its robustness to vehicle parameter variations and delay in the loop, and its insensitivity to wind disturbance. Finally, the emulation of a bus, a van, and two commercially available passenger vehicles is demonstrated in an advanced nonlinear simulator.  相似文献   

5.
In this article, an adaptive integrated control algorithm based on active front steering and direct yaw moment control using direct Lyapunov method is proposed. Variation of cornering stiffness is considered through adaptation laws in the algorithm to ensure robustness of the integrated controller. A simple two degrees of freedom (DOF) vehicle model is used to develop the control algorithm. To evaluate the control algorithm developed here, a nonlinear eight-DOF vehicle model along with a combined-slip tyre model and a single-point preview driver model are used. Control commands are executed through correction steering angle on front wheels and braking torque applied on one of the four wheels. Simulation of a double lane change manoeuvre using Matlab®/Simulink is used for evaluation of the control algorithm. Simulation results show that the integrated control algorithm can significantly enhance vehicle stability during emergency evasive manoeuvres on various road conditions ranging from dry asphalt to very slippery packed snow road surfaces.  相似文献   

6.
电子差速系统相对于传统的机械式差速器可以实现转矩的精准分配,根据轮胎的纵向运动特性以及侧向运动特性,结合轮胎滑移率让内外侧车轮在过弯时拥有足够的附着力,减小整车的横摆角速度,提高过弯稳定性。采用后轮双电机的驱动方案,驱动电机采用直接转矩控制的方法,由整车控制器将指定的计算转矩信号发送给电机控制器完成动力分配,所需转矩根据驾驶员的加速踏板及方向盘转角,运用阿克曼转向模型计算得到。  相似文献   

7.
主动前轮转向客车的操纵稳定性仿真分析   总被引:1,自引:0,他引:1  
建立某大型客车的含侧向、横摆及侧倾三自由度动力学模型,通过方向盘角阶跃转向仿真结果和试验数据的比较,验证了仿真分析的准确性。采用横摆角速度跟踪主动前轮转向控制策略,结合比例积分控制方法,在考虑作动器动态特性和前轮转角饱和特性的基础上,对主动前轮转向控制前后的车辆进行直线行驶下的侧向风扰动和湿滑路面急转弯情况下的仿真对比分析。结果表明,主动前轮转向控制后的车辆其操纵稳定性和行车安全性都有较大的提高。  相似文献   

8.
The present paper proposes an automatic path-tracking controller of a four-wheel steering (4WS) vehicle based on the sliding mode control theory. The controller has an advantage in that the front- and rear-wheel steering can be decoupled at the front and rear control points, which are defined as centres of percussion with respect to the rear and front wheels, respectively. Numerical simulations using a 27-degree-of-freedom vehicle model demonstrated the following characteristics: (1) the automatic 4WS controller has a more stable and more precise path-tracking capability than the 2WS controller, and (2) the automatic 4WS controller has robust stability against system uncertainties such as cornering power perturbation, path radius fluctuation, and cross-wind disturbance.  相似文献   

9.
The integrated longitudinal and lateral dynamic motion control is important for four wheel independent drive (4WID) electric vehicles. Under critical driving conditions, direct yaw moment control (DYC) has been proved as effective for vehicle handling stability and maneuverability by implementing optimized torque distribution of each wheel, especially with independent wheel drive electric vehicles. The intended vehicle path upon driver steering input is heavily depending on the instantaneous vehicle speed, body side slip and yaw rate of a vehicle, which can directly affect the steering effort of driver. In this paper, we propose a dynamic curvature controller (DCC) by applying a the dynamic curvature of the path, derived from vehicle dynamic state variables; yaw rate, side slip angle, and speed of a vehicle. The proposed controller, combined with DYC and wheel longitudinal slip control, is to utilize the dynamic curvature as a target control parameter for a feedback, avoiding estimating the vehicle side-slip angle. The effectiveness of the proposed controller, in view of stability and improved handling, has been validated with numerical simulations and a series of experiments during cornering engaging a disturbance torque driven by two rear independent in-wheel motors of a 4WD micro electric vehicle.  相似文献   

10.
A robust nonparametric approach to vehicle stability control by means of a four-wheel steer by wire system is introduced. Both yaw rate and sideslip angle feedbacks are used in order to effectively take into account safety as well as handling performances. Reference courses for yaw rate and sideslip angle are computed on the basis of the vehicle speed and the handwheel angle imposed by the driver. An output multiplicative model set is used to describe the uncertainty arising from a wide range of vehicle operating situations. The effects of saturation of the control variables (i.e. front and rear steering angles) are taken into account by adopting enhanced internal model control methodologies in the design of the feedback controller. Actuator dynamics are considered in the controller design. Improvements on understeer characteristics, stability in demanding conditions such as turning on low friction surfaces, damping properties in impulsive manoeuvres, and improved handling in closed loop (i.e. with driver feedback) manoeuvres are shown through extensive simulation results performed on an accurate 14 degrees of freedom nonlinear model, which proved to give good modelling results as compared with collected experimental data.  相似文献   

11.
12.
This paper presents an investigation about influencing the driver's behaviour intuitively by means of modified steering feel. For a rollover indication through haptic feedback a model was developed and tested that returned a warning to the driver about too high vehicle speed. This was realised by modifying the experienced steering wheel torque as a function of the lateral acceleration. The hypothesis for this work was that drivers of heavy vehicles will perform with more margin of safety to the rollover threshold if the steering feel is altered by means of decreased or additionally increased steering wheel torque at high lateral acceleration. Therefore, the model was implemented in a test truck with active steering with torque overlay and used for a track test. Thirty-three drivers took part in the investigation that showed, depending on the parameter setting, a significant decrease of lateral acceleration while cornering.  相似文献   

13.
This paper presents a new application of active rear-wheel steering control to improve the lateral vehicle behaviour. In the state of the art, yaw or lateral velocity is used as control variable that means one degree of freedom being not directly controlled. A worse subjective impressions due to movements in the rear end of the vehicle during strong counter-steering are a consequence. To avoid this effect in urban surroundings, an innovative structure to control the pivot point distance of the vehicle is proposed. In this case the coupled elementary states yaw and lateral velocity can be influenced based on a higher level criteria. Analysis show that pivot point fixing provides a comprehensible reference behaviour. Solving the issue of singularity during disappearing yaw movement is the basis to design a performant modified feedforward input–output linearisation. An analytic stability analysis of the internal dynamics shows system immanent limitations which do not influence the target of improving the lateral vehicle dynamics in urban manoeuvres. Finally, the advantages of pivot-based control are highlighted by a comparison with state of the art rear axle control.  相似文献   

14.
A differential braking control strategy using yaw rate feedback, coupled with µ feedforward is introduced for a vehicle cornering on different µ roads. A nonlinear 4-wheel car model is developed. A desired yaw rate is calculated from the reference model based on the driver steering input. It is shown that knowledge of µ offers significant improvement of the vehicle desired trajectory over that of a yaw rate controller alone. Uncertainties and time delay in estimating µ are shown to still yield a system that is superior to using no µ information at all.  相似文献   

15.
A differential braking control strategy using yaw rate feedback, coupled with µ feedforward is introduced for a vehicle cornering on different µ roads. A nonlinear 4-wheel car model is developed. A desired yaw rate is calculated from the reference model based on the driver steering input. It is shown that knowledge of µ offers significant improvement of the vehicle desired trajectory over that of a yaw rate controller alone. Uncertainties and time delay in estimating µ are shown to still yield a system that is superior to using no µ information at all.  相似文献   

16.
A new tyre model for studies of motorcycle lateral dynamics, and three new motorcycle models, each incorporating a different form of structural compliance, are developed. The tyre model is based on “taut string” ideas, and includes consideration of tread width and longitudinal tread rubber distortion and tread mass effects, and normal load variation. Parameter values appropriate to a typical motorcycle tyre are employed. The motorcycle models are for small lateral perturbations from straight running at constant speed, and include (a) lateral compliance of the front wheel in the front forks, (b) torsional compliance of the front forks, and (c) torsional compliance in the rear frame at the steering head about an axis perpendicular to the steering axis.

Results in the form of eigenvalues, indicating modal damping properties and natural frequencies are presented for each model. The properties of four large production machines for a range of forward speeds, and the practicable range of stiffnesses are calculated, and the implications are discussed.

It is concluded that typical levels of structural compliance in models (a) and (c) contribute significantly to the steering behaviour properties of large motorcycles, and their observed behaviour can be understood better in terms of the new results than of those existing previously. Some conclusions relating to optimal structural stiffness properties are also drawn.  相似文献   

17.
This paper investigates an active front steering control strategy based on quantitative feedback theory (QFT). By incorporating feedback from a yaw rate sensor into the active steering system, the control system improves the dynamic response of the vehicle. The steering response of a vehicle generally depends upon uncertain quantities like mass, velocity, and road conditions. Thus, QFT is used to design a controller with robust performance. A multi-degree-of-freedom nonlinear model is co-simulated here by MATLAB Simulink and ADAMS/CAR. The performance of the control system is evaluated under various emergency maneuvers and road conditions. The result shows that the designed robust control system has good control performance and can efficiently improve handing qualities and stability characteristics.  相似文献   

18.
在建立了汽车转向与悬架系统的综合模型的基础上,运用一种具有扩展的调节器结构LQG控制方法,设计了 主动悬架控制器,实现对车身横摆角速度、车身垂直加速度、车身侧倾角和俯仰角的集成控制,从而显著提高汽车的 平顺性、操纵稳定性和安全性。  相似文献   

19.
This paper proposes a nonlinear adaptive sliding mode control that aims to improve vehicle handling through a Steer-By-Wire system. The designed sliding mode control, which is insensitive to system uncertainties, offers an adaptive sliding gain to eliminate the precise determination of the bound of uncertainties. The sliding gain value is calculated using a simple adaptation algorithm that does not require extensive computational load. Achieving the improved handling characteristics requires both accurate state estimation and well-controlled steering inputs from the Steer-By-Wire system. A second order sliding mode observer provides accurate estimation of lateral and longitudinal velocities while the driver steering angle and yaw rate are available from the automotive sensors. A complete stability analysis based on Lyapunov theory has been presented to guarantee closed loop stability. The simulation results confirmed that the proposed adaptive robust controller not only improves vehicle handling performance but also reduces the chattering problem in the presence of uncertainties in tire cornering stiffness.  相似文献   

20.
Based on vehicle constraints and known human operator characteristics, a strategy model was postulated for describing behavior in the lane keeping task. This model includes nonlinear thresholds operating on vehicle yaw and lateral translation, random input sources to account for spurious driver activity, and smoothing to account for driver response lag. The output of the model is steering wheel position

To determine model parameters and model suitability in describing driver behavior, recordings were made for driver-subjects performing a lane-keeping task in a moving base driving simulator having a computer generated display. A procedure involving both analytic and experimental techniques was then developed for determining the model parameters of each driver

Statistical comparisons and visual inspections made between driver-vehicle and model-vehicle time histories indicate a high degree of correspondence. Models such as these show promise in obtaining a better understanding of driver behavior and driver-vehicle response by incorporating nonlinear elements in the driver model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号