首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Motivated by the advancement in connected and autonomous vehicle technologies, this paper develops a novel car-following control scheme for a platoon of connected and autonomous vehicles on a straight highway. The platoon is modeled as an interconnected multi-agent dynamical system subject to physical and safety constraints, and it uses the global information structure such that each vehicle shares information with all the other vehicles. A constrained optimization based control scheme is proposed to ensure an entire platoon’s transient traffic smoothness and asymptotic dynamic performance. By exploiting the solution properties of the underlying optimization problem and using primal-dual formulation, this paper develops dual based distributed algorithms to compute optimal solutions with proven convergence. Furthermore, the asymptotic stability of the unconstrained linear closed-loop system is established. These stability analysis results provide a principle to select penalty weights in the underlying optimization problem to achieve the desired closed-loop performance for both the transient and the asymptotic dynamics. Extensive numerical simulations are conducted to validate the efficiency of the proposed algorithms.  相似文献   

2.
In the past few years, vehicular ad hoc networking (VANET) has attracted significant attention and many fundamental issues have been investigated, such as network connectivity, medium access control (MAC) mechanism, routing protocol, and quality of service (QoS). Nevertheless, most related work has been based on simplified assumptions on the underlying vehicle traffic dynamics, which has a tight interaction with VANET in practice. In this paper, we try to investigate VANET performance from the vehicular cyber-physical system (VCPS) perspective. Specifically, we consider VANET connectivity of platoon-based VCPSs where all vehicles drive in platoon-based patterns, which facilitate better traffic performance as well as information services. We first propose a novel architecture for platoon-based VCPSs, then we derive the vehicle distribution under platoon-based driving patterns on a highway. Based on the results, we further investigate inter-platoon connectivity in a bi-directional highway scenario and evaluate the expected time of safety message delivery among platoons, taking into account the effects of system parameters, such as traffic flow, velocity, platoon size and transmission range. Extensive simulations are conducted which validate the accuracy of our analysis. This study will be helpful to understand the behavior of VCPSs, and will be helpful to improve vehicle platoon design and deployment.  相似文献   

3.
This paper addresses the problem of the hybrid control of autonomous vehicles driving on automated highways. Vehicles are autonomous, so they do not communicate with each other nor with the infrastructure. Two problems have to be dealt with: a vehicle driving in a single-lane highway must never collide with its leading vehicle; and a vehicle entering the highway at a designated entry junction must be able to merge from the merging lane to the main lane, again without any collision. To solve these problems, we equip each vehicle with a hybrid controller, consisting of several continuous control laws embedded inside a finite state automaton. The automaton specifies when a given vehicle must enter the highway, merge into the main lane, yield to other vehicles, exit from the highway, and so on. The continuous control laws specify what acceleration the vehicle must have in order to avoid collisions with nearby vehicles. By carefully designing these control laws and the conditions guarding the automaton transitions, we are able to demonstrate three important results. First, we state the initial conditions guaranteeing that a following vehicle never collides with its leading vehicle. Second, we extend this first result to a lane of autonomous vehicles. Third, we prove that if all the vehicles are equipped with our hybrid controller, then no collision can ever occur, and all vehicles either merge successfully or are forced to drop out when they reach the end of their merging lane. Finally, we show the outcome of a highway microsimulation modelled after the Katy Corridor near Houston, Texas: our single-lane highway can accommodate 4000 vehicles per hour with neither drop-outs nor traffic congestion. It is entirely programmed in SHIFT, a hybrid systems simulation language developed at UC Berkeley by the PATH group. This shows that SHIFT is a well suited language for designing safe control laws for autonomous highway systems, among others.  相似文献   

4.
Effective inter-vehicle communication is fundamental to a decentralized traffic information system based on mobile ad hoc vehicle networks. Here we model the information propagation process through inter-vehicle communication when the vehicle spacing follows a general i.i.d. distribution. Equations for the expected value and variance of propagation distance are derived. In addition, we provide simple equations for the expected number of vehicles covered and the probability distribution of propagation distance. This research advances on an earlier study where the vehicle spacing is assumed to follow an exponential distribution. This paper generalizes the earlier results and potentially enables a design for robust information propagation by allowing for examination of the impact of different headway distributions. Within the new modeling framework, we also compute connectivity between two vehicles.  相似文献   

5.
Vehicle platooning, a coordinated movement strategy, has been proposed to address a range of current transport challenges such as traffic congestion, road safety, energy consumption and pollution. But in order to form platoons in an ad-hoc manner the vehicles have to ‘speak the same language’, which is in current practice limited to vehicles of particular manufacturers. There is no standard language yet. Also in research, while the current literature focuses on platoon control strategies, intra-platoon communication, or platooning impacts on traffic, the conceptualization of platooning objects and their operations remained unattended. This paper aims to fill this fundamental gap by developing a formal model of platooning concepts. The paper proposes an ontological model of platooning objects and properties and abstract basic building blocks of platoon operations that can then be aggregated to complex platooning behavior. The presented ontological model provides the logical reasoning to support vital decision-making during platoon lifecycles. The ontological model is implemented and demonstrated.  相似文献   

6.
The influence of inter-vehicle spacing on the in-vehicle air pollution exposure of car commuters in heavy traffic conditions was investigated, both experimentally and numerically. An experimental investigation was carried out into the effect, on in-vehicle air pollution exposure, of maintaining a distance of approximately 2 m to the preceding vehicle in congested idling traffic conditions compared to that of an identical vehicle maintaining a distance of approximately 1 m. In-vehicle VOC and PM2.5 concentrations revealed that a 19–31% reduction in exposure at the larger inter-vehicle spacing. A computational fluid dynamics model was calibrated using the experimental data and used to prediction car exposure under different conditions by varying certain key parameters. Agreement between the experimental and predicted data of 82% was achieved. The results show a significant drop in pollutant concentrations occurred within the first 2 m of their emission from the preceding vehicles exhaust.  相似文献   

7.
There are two kinds of stability associated with traffic flow problems – string stability (or car-following stability) and traffic flow stability. We provide a clear distinction between traffic flow stability and string stability, and such a distinction has not been recognized in the literature, thus far. String stability is stability with respect to intervehicular spacing; intuitively, it ensures the knowledge of the position and velocity of every vehicle in the traffic, within reasonable bounds of error, from the knowledge of the position and velocity of a vehicle in the traffic. String stability is analyzed without adding vehicles to or removing vehicles from the traffic. On the other hand, traffic flow stability deals with the evolution of traffic velocity and density in response to the addition and/or removal of vehicles from the flow. Traffic flow stability can be guaranteed only if the velocity and density solutions of the coupled set of equations is stable, i.e., only if stability with respect to automatic vehicle following and stability with respect to density evolution is guaranteed. Therefore, the flow stability and critical capacity of any section of a highway is dependent not only on the vehicle following control laws and the information used in their synthesis, but also on the spacing policy employed by the control system. Such a dependence has practical consequences in the choice of a spacing policy for adaptive cruise control laws and on the stability of the traffic flow consisting of vehicles equipped with adaptive cruise control features on the existing and future highways. This critical dependence is the subject of investigation here.  相似文献   

8.
The advancements in communication and sensing technologies can be exploited to assist the drivers in making better decisions. In this paper, we consider the design of a real-time cooperative eco-driving strategy for a group of vehicles with mixed automated vehicles (AVs) and human-driven vehicles (HVs). The lead vehicles in the platoon can receive the signal phase and timing information via vehicle-to-infrastructure (V2I) communication and the traffic states of both the preceding vehicle and current platoon via vehicle-to-vehicle (V2V) communication. We propose a receding horizon model predictive control (MPC) method to minimise the fuel consumption for platoons and drive the platoons to pass the intersection on a green phase. The method is then extended to dynamic platoon splitting and merging rules for cooperation among AVs and HVs in response to the high variation in urban traffic flow. Extensive simulation tests are also conducted to demonstrate the performance of the model in various conditions in the mixed traffic flow and different penetration rates of AVs. Our model shows that the cooperation between AVs and HVs can further smooth out the trajectory of the latter and reduce the fuel consumption of the entire traffic system, especially for the low penetration of AVs. It is noteworthy that the proposed model does not compromise the traffic efficiency and the driving comfort while achieving the eco-driving strategy.  相似文献   

9.
Automated highway systems (AHS) are intended to increase the throughput and safety of roadways through computer control, communication and sensing. In the “platoon” concept for AHS, vehicles travel on highways in closely spaced groups. To maximize benefits, it is desirable to form platoons that are reasonably large (five or more vehicles), and it is also desirable to ensure that platoons remain intact for considerable distances. This paper develops and evaluates strategies for organizing vehicles into platoons at highway entrances, with the objective of maximizing the distance that platoons stay intact, so that they do not need to be regrouped into new platoons on the highway itself. Fundamentally, this entails grouping vehicles according to their destination. We evaluate various strategies in which vehicles are sorted on entrance ramps, with respect to platoon sizes, throughput and platoon formation time.  相似文献   

10.
Length-based vehicle classification is an important topic in traffic engineering, because estimation of traffic speed from single loop detectors usually requires the knowledge of vehicle length. In this paper, we present an algorithm that can classify vehicles passing by a loop detector into two categories: long vehicles and regular cars. The proposed algorithm takes advantage of event-based loop detector data that contains every vehicle detector actuation and de-actuation “event”, therefore time gaps between consecutive vehicles and detector occupation time for each vehicle can be easily derived. The proposed algorithm is based on an intuitive observation that, for a vehicle platoon, longer vehicles in the platoon will have relatively longer detector occupation time. Therefore, we can identify longer vehicles by examining the changes of occupation time in a vehicle platoon. The method was tested using the event-based data collected from Trunk Highway 55 in Minnesota, which is a high speed arterial corridor controlled by semi-actuated coordinated traffic signals. The result shows that the proposed method can correctly classify most of the vehicles passing by a single loop detector.  相似文献   

11.
This study investigates the effect of traffic signal coordination on emissions and compares it with their effects on operational performance measures of delay and stops. Various platoon ratios are obtained by simulating cycle lengths and offsets. Our results indicate that the impact of the cycle length on delay is more significant than those on stops and emissions for under-saturation traffic conditions. Given a fixed cycle length, increasing the platoon ratio can reduce delay, stops, and emissions, with reduction in emissions being correlated with stops than delay. The effect on emissions from the platoon arrival with respect to the onset of green or red indication is identified. With the same cycle length and platoon ratio, the early arrival situation, when the leading vehicles of a platoon encounters the red signal, can generate more emissions than are associated with late platoon arrival, when the last few vehicles in a platoon are stopped at the intersection by the onset of the red signal.  相似文献   

12.
The introduction of connected and autonomous vehicles will bring changes to the highway driving environment. Connected vehicle technology provides real-time information about the surrounding traffic condition and the traffic management center’s decisions. Such information is expected to improve drivers’ efficiency, response, and comfort while enhancing safety and mobility. Connected vehicle technology can also further increase efficiency and reliability of autonomous vehicles, though these vehicles could be operated solely with their on-board sensors, without communication. While several studies have examined the possible effects of connected and autonomous vehicles on the driving environment, most of the modeling approaches in the literature do not distinguish between connectivity and automation, leaving many questions unanswered regarding the implications of different contemplated deployment scenarios. There is need for a comprehensive acceleration framework that distinguishes between these two technologies while modeling the new connected environment. This study presents a framework that utilizes different models with technology-appropriate assumptions to simulate different vehicle types with distinct communication capabilities. The stability analysis of the resulting traffic stream behavior using this framework is presented for different market penetration rates of connected and autonomous vehicles. The analysis reveals that connected and autonomous vehicles can improve string stability. Moreover, automation is found to be more effective in preventing shockwave formation and propagation under the model’s assumptions. In addition to stability, the effects of these technologies on throughput are explored, suggesting substantial potential throughput increases under certain penetration scenarios.  相似文献   

13.
The vehicular ad hoc network has great potential in improving traffic safety. One of the most important and interesting issues in the research community is the safety evaluation with limited penetration rates of vehicles equipped with inter-vehicular communications. In this paper, a stochastic model is proposed for analyzing the vehicle chain collisions. It takes into account the influences of different penetration rates, the stochastic nature of inter-vehicular distance distribution, and the different kinematic parameters related to driver and vehicle. The usability and accuracy of this model is tested and proved by comparative experiments with Monte Carlo simulations. The collision outcomes of a platoon in different penetration rates and traffic scenarios are also analyzed based on this model. These results are useful to provide theoretical insights into the safety control of a heterogeneous platoon.  相似文献   

14.
As electric vehicles (EVs) have gained an increasing market penetration rate, the traffic on urban roads will tend to be a mix of traditional gasoline vehicles (GVs) and EVs. These two types of vehicles have different energy consumption characteristics, especially the high energy efficiency and energy recuperation system of EVs. When GVs and EVs form a platoon that is recognized as an energy-friendly traffic pattern, it is critical to holistically consider the energy consumption characteristics of all vehicles to maximize the energy efficiency benefit of platooning. To tackle this issue, this paper develops an optimal control model as a foundation to provide eco-driving suggestions to the mixed-traffic platoon. The proposed model leverages the promising connected vehicle technology assuming that the speed advisory system can obtain the information on the characteristics of all platoon vehicles. To enhance the model applicability, the study proposes two eco-driving advisory strategies based on the developed optimal control model. One strategy provides the lead vehicle an acceleration profile, while the other provides a set of targeted cruising speeds. The acceleration-based eco-driving advisory strategy is suitable for platoons with an automated leader, and the speed-based advisory strategy is more friendly for platoons with a human-operated leader. Results of numerical experiments demonstrate the significance when the eco-driving advisory system holistically considers energy consumption characteristics of platoon vehicles.  相似文献   

15.
We present an adaptive cruise control (ACC) strategy where the acceleration characteristics, that is, the driving style automatically adapts to different traffic situations. The three components of the concept are the ACC itself, implemented in the form of a car-following model, an algorithm for the automatic real-time detection of the traffic situation based on local information, and a strategy matrix to adapt the driving characteristics (that is, the parameters of the ACC controller) to the traffic conditions. Optionally, inter-vehicle and infrastructure-to-car communication can be used to improve the accuracy of determining the traffic states. Within a microscopic simulation framework, we have simulated the complete concept on a road section with an on-ramp bottleneck, using empirical loop-detector data for an afternoon rush-hour as input for the upstream boundary. We found that the ACC vehicles improve the traffic stability and the dynamic road capacity. While traffic congestion in the reference scenario was completely eliminated when simulating a proportion of 25% ACC vehicles, travel times were already significantly reduced for much lower penetration rates. The efficiency of the proposed driving strategy even for low market penetrations is a promising result for a successful application in future driver assistance systems.  相似文献   

16.
We have carried out car-following experiments with a 25-car-platoon on an open road section to study the relation between a car’s speed and its spacing under various traffic conditions, in the hope to resolve a controversy surrounding this fundamental relation of vehicular traffic. In this paper we extend our previous analysis of these experiments, and report new experimental findings. In particular, we reveal that the platoon length (hence the average spacing within a platoon) might be significantly different even if the average velocity of the platoon is essentially the same. The findings further demonstrate that the traffic states span a 2D region in the speed-spacing (or density) plane. The common practice of using a single speed-spacing curve to model vehicular traffic ignores the variability and imprecision of human driving and is therefore inadequate. We have proposed a car-following model based on a mechanism that in certain ranges of speed and spacing, drivers are insensitive to the changes in spacing when the velocity differences between cars are small. It was shown that the model can reproduce the experimental results well.  相似文献   

17.
Traffic instability is an important but undesirable feature of traffic flow. This paper reports our experimental and empirical studies on traffic flow instability. We have carried out a large scale experiment to study the car-following behavior in a 51-car-platoon. The experiment has reproduced the phenomena and confirmed the findings in our previous 25-car-platoon experiment, i.e., standard deviation of vehicle speeds increases in a concave way along the platoon. Based on our experimental results, we argue that traffic speed rather than vehicle spacing (or density) might be a better indicator of traffic instability, because vehicles can have different spacing under the same speed. For these drivers, there exists a critical speed between 30 km/h and 40 km/h, above which the standard deviation of car velocity is almost saturated (flat) along the 51-car-platoon, indicating that the traffic flow is likely to be stable. In contrast, below this critical speed, traffic flow is unstable and can lead to the formation of traffic jams. Traffic data from the Nanjing Airport Highway support the experimental observation of existence of a critical speed. Based on these findings, we propose an alternative mechanism of traffic instability: the competition between stochastic factors and the so-called speed adaptation effect, which can better explain the concave growth of speed standard deviation in traffic flow.  相似文献   

18.
Traffic congestion and energy issues have set a high bar for current ground transportation systems. With advances in vehicular communication technologies, collaborations of connected vehicles have becoming a fundamental block to build automated highway transportation systems of high efficiency. This paper presents a distributed optimal control scheme that takes into account macroscopic traffic management and microscopic vehicle dynamics to achieve efficiently cooperative highway driving. Critical traffic information beyond the scope of human perception is obtained from connected vehicles downstream to establish necessary traffic management mitigating congestion. With backpropagating traffic management advice, a connected vehicle having an adjustment intention exchanges control-oriented information with immediately connected neighbors to establish potential cooperation consensus, and to generate cooperative control actions. To achieve this goal, a distributed model predictive control (DMPC) scheme is developed accounting for driving safety and efficiency. By coupling the states of collaborators in the optimization index, connected vehicles achieve fundamental highway maneuvers cooperatively and optimally. The performance of the distributed control scheme and the energy-saving potential of conducting such cooperation are tested in a mixed highway traffic environment by the means of microscopic simulations.  相似文献   

19.
Traffic waves are phenomena that emerge when the vehicular density exceeds a critical threshold. Considering the presence of increasingly automated vehicles in the traffic stream, a number of research activities have focused on the influence of automated vehicles on the bulk traffic flow. In the present article, we demonstrate experimentally that intelligent control of an autonomous vehicle is able to dampen stop-and-go waves that can arise even in the absence of geometric or lane changing triggers. Precisely, our experiments on a circular track with more than 20 vehicles show that traffic waves emerge consistently, and that they can be dampened by controlling the velocity of a single vehicle in the flow. We compare metrics for velocity, braking events, and fuel economy across experiments. These experimental findings suggest a paradigm shift in traffic management: flow control will be possible via a few mobile actuators (less than 5%) long before a majority of vehicles have autonomous capabilities.  相似文献   

20.
This paper presents an empirical investigation into platooning on two-lane two-way highways. The main objective is to better understand this phenomenon that has important implications on traffic performance and safety. Field data from three study sites in the state of Montana were used in this study. Separate investigations were performed to examine the relationships among platoon-related variables, namely; time headway, travel speed, and platoon size. The study confirmed that interaction between successive vehicles in the traffic stream generally diminishes beyond a time headway threshold value that fell in the range of 5–7 seconds. Also, the study revealed that very short headways (less than one second) are more associated with aggressive driving and higher speeds than with slow-moving platoons due to lack of passing opportunities. Further, the study found that amount of impedance to traffic is proportional to the size of platoon as evidenced by the relative difference between mean speed of various size platoons and the mean speed of unimpeded vehicles. The study provided other valuable insights into the platooning phenomenon on two-lane highways that are essential in developing a better understanding of traffic operation on two-lane highways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号