首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The structure and aerodynamics performance of gas turbine inlet system is an important part of technology of gas turbine installed on naval vessels. The design and numerical simulations of gas turbine inlet system are conducted and reliable foundation for design and manufacture of marine gas turbine inlet system of high performance is provided. Numerical simulations and experiments of two inlet system models of gas turbine are conducted with satisfactory results and are of significance to the actual application of the inlet system.  相似文献   

2.
Although the upwind configuration is more popular in the field of wind energy, the downwind one is a promising type for the offshore wind energy due to its special advantages. Different configurations have different aerodynamic performance and it is important to predict the performance of both downwind and upwind configurations accurately for designing and developing more reliable wind turbines. In this paper, a numerical investigation on the aerodynamic performance of National Renewable Energy Laboratory(NREL) phase VI wind turbine in downwind and upwind configurations is presented. The open source toolbox Open FOAM coupled with arbitrary mesh interface(AMI) method is applied to tackle rotating problems of wind turbines. Two 3D numerical models of NREL phase VI wind turbine with downwind and upwind configurations under four typical working conditions of incoming wind velocities are set up for the study of different unsteady characteristics of the downwind and upwind configurations, respectively. Numerical results of wake vortex structure, time histories of thrust, pressure distribution on the blade and limiting streamlines which can be used to identify points of separation in a 3D flow are presented. It can be concluded that thrust reduction due to blade-tower interaction is small for upwind wind turbines but relatively large for downwind wind turbines and attention should be paid to the vibration at a certain frequency induced by the cyclic reduction for both configurations. The results and conclusions are helpful to analyze the different aerodynamic performance of wind turbines between downwind and upwind configurations, providing useful references for practical design of wind turbine.  相似文献   

3.
This paper analyses the issue of accelerated start-up of a marine steam turbine, which is an important problem because the start-up of a steam machine involves the combustion of fuel that is not transformed into useful energy. To find novel technologies that offer improvements in this aspect is essential due to restrictions on reducing ship emissions. Thus, the shorter the start-up time, the better for the environment and economy. High-pressure(HP) part of the turbine originally located on the Q...  相似文献   

4.
Strong restrictions on emissions from marine power plants(particularly SOx,NOx)will probably be adopted in the near future.In this paper,a combined solid oxide fuel cell(SOFC)and steam turbine fuelled by natural gas is proposed as an attractive option to limit the environmental impact of the marine sector.The analyzed variant of the combined cycle includes a SOFC operated with natural gas fuel and a steam turbine with a single-pressure waste heat boiler.The calculations were performed for two types of tubular and planar SOFCs,each with an output power of 18 MW.This paper includes a detailed energy analysis of the combined system.Mass and energy balances are performed not only for the whole plant but also for each component in order to evaluate the thermal efficiency of the combined cycle.In addition,the effects of using natural gas as a fuel on the fuel cell voltage and performance are investigated.It has been found that a high overall efficiency approaching 60%may be achieved with an optimum configuration using the SOFC system.The hybrid system would also reduce emissions,fuel consumption,and improve the total system efficiency.  相似文献   

5.
This paper describes the characteristics of liquefied natural gas(LNG) carriers briefly. The LNG carrier includes power plant selection, vapor treatment, liquid cargo tank type, etc. Two parameters—fuel substitution rate and recovery of boil of gas(BOG) volume to energy efficiency design index(EEDI) formula are added, and EEDI formula of LNG carriers is established based on ship EEDI formula. Then, based on steam turbine propulsion device of LNG carriers, mathematical models of LNG carriers' reference line value are established in this paper. By verification, the EEDI formula of LNG carriers described in this paper can provide a reference for LNG carrier EEDI calculation and green shipbuilding.  相似文献   

6.
One of the basic ways to reduce polluting emissions of ship power plants is application of innovative devices for on-board energy generation by means of secondary energy resources. The combined gas turbine and diesel engine plant with thermochemical recuperation of the heat of secondary energy resources has been considered. It is suggested to conduct the study with the help of mathematical modeling methods. The model takes into account basic physical correlations, material and thermal balances, phase equilibrium, and heat and mass transfer processes. The paper provides the results of mathematical modeling of the processes in a gas turbine and diesel engine power plant with thermochemical recuperation of the gas turbine exhaust gas heat by converting a hydrocarbon fuel. In such a plant, it is possible to reduce the specific fuel consumption of the diesel engine by 20%. The waste heat potential in a gas turbine can provide efficient hydrocarbon fuel conversion at the ratio of powers of the diesel and gas turbine engines being up to 6. When the diesel engine and gas turbine operate simultaneously with the use of the LNG vapor conversion products, the efficiency coefficient of the plant increases by 4%–5%.  相似文献   

7.
This paper describes the characteristics of liquefied natural gas (LNG) carriers briefly. The LNG carrier includes power plant selection, vapor treatment, liquid cargo tank type, etc. Two parameters fuel substitution rate and recovery of boil of gas (BOG) volume to energy efficiency design index (EEDI) formula are added, and EEDI formula of LNG carriers is established based on ship EEDI formula. Then, based on steam turbine propulsion device of LNG carriers, mathematical models of LNG carriers' reference line value are established in this paper. By verification, the EEDI formula of LNG carriers described in this paper can provide a reference for LNG carrier EEDI calculation and green shipbuilding.  相似文献   

8.
A three-dimensional time domain approach is used to study the coupled motions of two ships with forward speed in waves. In this approach, the boundary condition is satisfied on the mean wetted hull surface of the moving bodies and the free surface condition is linearized. The problem is solved by using a transient free-surface Green function source distribution on the submerged hulls. After solving the response amplitude operator, the method of spectral analysis is employed to clearly express the motion energy spectrum and significant amplitude of two ships. For verifying the code, two same circular cylinders at beam wave are selected to calculate coupled motions by comparison with the results obtained by 3D frequency method which has been proved to be efficient for solving such problems.Two Wigley ships of different sizes with the same forward speed are chosen for numerical calculation of the interaction effect, and some useful suggestions are obtained for underway replenishment at sea.  相似文献   

9.
In this paper we present two strategies of AUV (Autonomous Underwater Vehicle) region detection and an approach to decompose the detection region according to the direction of the ocean current. In the task of local detection and identification, the algorithm against the ocean current was proposed. In the tasks of closing obstacle, going back or moving, the fuzzy logic theory was used to solve the effect of ocean current. In one of our strategies the concept of weighted journey based on the angle between heading and ocean current is suggested and the TSP‘s exact optimal result is utilized to solve the global path planning. Simulations demonstrate the feasibility of this approach.  相似文献   

10.
A simple approach is described to estimate the wave power absorption potential of submerged devices known to cause wave focusing and flow enhancement. In particular, the presence of a flow-through power take-off (PTO) system, such as low-head turbines, can be accounted for. The wave radiation characteristics of an appropriately selected Lagrangian element (LE) in the fluid domain are first determined. In the limit of a vanishing mass, the LE reduces to a patch of distributed normal dipoles. The hydrodynamic coefficients of this virtual object are then input in a standard equation of motion where the effect of the PTO can be represented, for example, as a dashpot damping term. The process is illustrated for a class of devices recently proposed by Carter and Ertekin (2011), although in a simplified form. Favorable wave power absorption is shown for large ratios of the LE wave radiation coefficient over the LE added mass coefficient. Under optimal conditions, the relative flow reduction from the PTO theoretically lies between 0.50 and 1 2 ≈ 0.71, with lower values corresponding to better configurations. Wave power capture widths, the sensitivity of results to PTO damping and sample spectral calculations at a typical site in Hawaiian waters are proposed to further illustrate the versatility of the method.  相似文献   

11.
The fuzzy logic and neural networks are combined in this paper, setting up the fuzzy neural network (FNN) ; meanwhile, the distinct differences and connections between the fuzzy logic and neural network are compared. Furthermore, the algorithm and structure of the FNN are introduced. In order to diagnose the faults of nuclear power plant, the FNN is applied to the nuclear power plant, and the intelligence fault diagnostic system of the nuclear power plant is built based on the FNN . The fault symptoms and the possibility of the inverted U-tube break accident of steam generator are discussed. In order to test the system‘ s validity, the inverted U-tube break accident of steam generator is used as an example and many simulation experiments are performed. The test result shows that the FNN can identify the fault.  相似文献   

12.
A simple approach is described to estimate the wave power absorption potential of submerged devices known to cause wave focusing and flow enhancement.In particular,the presence of a flow-through power take-off(PTO)system,such as low-head turbines,can be accounted for.The wave radiation characteristics of an appropriately selected Lagrangian element(LE)in the fluid domain are first determined.In the limit of a vanishing mass,the LE reduces to a patch of distributed normal dipoles.The hydrodynamic coefficients of this virtual object are then input in a standard equation of motion where the effect of the PTO can be represented,for example,as a dashpot damping term.The process is illustrated for a class of devices recently proposed by Carter and Ertekin(2011),although in a simplified form.Favorable wave power absorption is shown for large ratios of the LE wave radiation coefficient over the LE added mass coefficient.Under optimal conditions,the relative flow reduction from the PTO theoretically lies between 0.50 and 1 2≈0.71,with lower values corresponding to better configurations.Wave power capture widths,the sensitivity of results to PTO damping and sample spectral calculations at a typical site in Hawaiian waters are proposed to further illustrate the versatility of the method.  相似文献   

13.
Mathematical models simulating steep waves at a focus point are presented in this paper. Simulations of extreme waves in a model basin were used to determine the loads on floating structures induced by the waves. Based on a new wave theory, numerical test results show that the simulation procedure is effective and the induced motion of water particles in the front of waves is an important factor influencing impact loads on floating bodies.  相似文献   

14.
In recent years, as the composite laminated plates are widely used in engineering practice such as aerospace, marine and building engineering, the vibration problem of the composite laminated plates is becoming more and more important. Frequency, especially the fundamental frequency, has been considered as an important factor in vibration problem. In this paper, a calculation method of the fundamental frequency of arbitrary laminated plates under various boundary conditions is proposed. The vibration differential equation of the laminated plates is established at the beginning of this paper and the frequency formulae of specialty orthotropic laminated plates under various boundary conditions and antisymmetric angle-ply laminated plates with simply-supported edges are investigated. They are proved to be correct. Simple algorithm of the fundamental frequency for multilayer antisymmetric and arbitrary laminated plates under various boundary conditions is studied by a series of typical examples. From the perspective of coupling, when the number of laminated plates layers N 8–10, some coupling influence on the fundamental frequency can be neglected. It is reasonable to use specialty orthotropic laminated plates with the same thickness but less layers to calculate the corresponding fundamental frequency of laminated plates. Several examples are conducted to prove correctness of this conclusion. At the end of this paper, the influence of the selected number of layers of specialty orthotropic laminates on the fundamental frequency is investigated. The accuracy and complexity are determined by the number of layers. It is necessary to use proper number of layers of special orthotropic laminates with the same thickness to simulate the fundamental frequency in different boundary conditions.  相似文献   

15.
Escalating apprehension about the harmful effects of widespread use of conventional fossil fuels in the marine field and in internal combustion engines in general, has led to a vast amount of efforts and the directing of large capital investment towards research and development of sustainable alternative energy sources. One of the most promising and abundant of these sources is hydrogen. Firstly, the use of current fossil fuels is. discussed focusing on the emissions and economic sides to emphasize the need for a new, cleaner and renewable fuel with particular reference to hydrogen as a suitable possible alternative. Hydrogen properties, production and storage methods are then reviewed along with its suitability from the economical point of view. Finally, a cost analysis for the use of hydrogen in internal combustion engines is carried out to illustrate the benefits of its use as a replacement for diesel. The outcome of this cost analysis shows that 98% of the capital expenditure is consumed by the equipment, and 68.3% of the total cost of the equipment is spent on the solar photovoltaic cells. The hydrogen plant is classified as a large investment project because of its high initial cost which is about 1 billion US$; but this is justified because hydrogen is produced in a totally green way. When hydrogen is used as a fuel, no harmful emissions are obtained.  相似文献   

16.
Research on the fully fuzzy time-cost trade-off based on genetic algorithms   总被引:2,自引:0,他引:2  
It is very difficult to estimate exact values of time and cost of an activity in project scheduling process because many uncertain factors, such as weather, productivity level, human factors etc. , dynamically affect them during project implementation process. A GAs-based fully fuzzy optimal time-cost trade-off model is presented based on fuzzy sets and genetic algorithms (GAs). In tihs model all parameters and variables are characteristics by fuzzy numbers. And then GAs is adopted to search for the optimal solution to this model. The method solves the time-cost trade-off problems under an uncertain environment and is proved practicable through a giving example in ship building scheduling.  相似文献   

17.
<正>September 4–8,2016Copenhagen,Denmark Today,proper and practical design of ships and other floating structures is as important as ever,since safety and efficiency are fundamental to any marine operation including technical operations on ships in a seaway,oil and gas production from floating offshore structures,installation,inspection and maintenance of structures for wave and wind energy harvesting,aqua culture,etc.On this account,Technical University of Denmark(DTU)is most delighted to be the  相似文献   

18.
Environmental effects have an important influence on Offshore Wind Turbine(OWT) power generation efficiency and the structural stability of such turbines. In this study, we use an in-house Boundary Element(BEM)—pan MARE code—to simulate the unsteady flow behavior of a full OWT with various combinations of aerodynamic and hydrodynamic loads in the time domain. This code is implemented to simulate potential flows for different applications and is based on a three-dimensional first-order panel method. Three different OWT configurations consisting of a generic 5 MW NREL rotor with three different types of foundations(Monopile, Tripod, and Jacket) are investigated. These three configurations are analyzed using the RANSE solver which is carried out using ANSYS CFX for validating the corresponding results. The simulations are performed under the same environmental atmospheric wind shear and rotor angular velocity, and the wave properties are wave height of 4 m and wave period of 7.16 s. In the present work, wave environmental effects were investigated firstly for the two solvers, and good agreement is achieved. Moreover, pressure distribution in each OWT case is presented, including detailed information about local flow fields. The time history of the forces at inflow direction and its moments around the mudline at each OWT part are presented in a dimensionless form with respect to the mean value of the last three loads and the moment amplitudes obtained from the BEM code, where the contribution of rotor force is lower in the tripod case and higher in the jacket case and the calculated hydrodynamic load that effect on jacket foundation type is lower than other two cases.  相似文献   

19.
Cruciform joints in ships are prone to fatigue damage and the determination of type of weld plays a significant role in the fatigue design of the joint.In this paper,the effect of weld geometry on fatigue failure of load carrying cruciform joints in ships is investigated using Effective Notch Stress(ENS) approach.A fictitious notch of 1 mm radius is introduced at the weld root and toe and fatigue stress is evaluated.The effect of weld leg length(l) and weld penetration depth(p) on ENS at weld ro...  相似文献   

20.
[Objective]This paper proposes a fuzzy sliding mode controller based on T-S fuzzy logic for the vertical plane motion control of an autonomous underwater glider (AUG) with limited actuator capability. [Methods]In the fuzzy sliding mode controller, the fuzzy switching rate is used to replace the switching rate in the fixed time controller to effectively suppress buffeting. The fuzzy switching rate is obtained by fitting the switching rate of the fixed time controller with T-S fuzzy rules. Based on the limited capabilities of AUG actuators, a saturation auxiliary system is designed to improve the actuator saturation effect. Finally, the performance of the system is verified by Lyapunov stability analysis and numerical simulation. [Results]The results show that the AUG under the fuzzy sliding mode controller and the saturation auxiliary system can converge in finite time. The effectiveness of the fuzzy sliding mode controller and the saturation auxiliary system are verified by numerical simulation. [Conclusions]By making comparisons with the fixed-time controller, it is verified that the two controllers have similar control performance, and the buffeting of the fuzzy sliding mode controller is lesser. © 2022 Journal of Clinical Hepatology. All rights reserved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号