首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 406 毫秒
1.
《铁道建筑》2004,(9):87-87
青藏铁路格尔木至拉萨段全长 114 2km ,海拔 40 0 0m以上地段长度约为 965km ,要穿越连续多年冻土区 63 2km ,这是目前世界上穿越多年冻土里程最长的高原铁路。在工程的作用下 ,这些多年冻土极易发生变化而产生融化下沉问题。如何解决冻土路基的融沉问题 ?以程国栋院士为首的青  相似文献   

2.
多年冻土区路基工程病害的成因分析及防治措施   总被引:1,自引:0,他引:1  
青藏铁路格拉段是世界上海拔最高线路最长的高原铁路,线路通过多年冻土区总长553.758 km,主要介绍多年冻土区路基工程的主要病害的产生原因及防治措施.  相似文献   

3.
保温材料在青藏铁路路基工程中的应用   总被引:1,自引:0,他引:1  
青藏铁路格拉段主要地质问题是高原多年冻土问题,多年冻土的融化引起铁路路基的不稳定和路基的沉降等是我们青藏铁路设计者急需攻克的难题.本文针对青藏铁路设计所采取的土工合成保温材料对修筑铁路路基后多年冻土的保护措施和效果进行总结和分析,对EPS板和PU板保温材料的保温性能进行室内试验和现场测试的检验和评价.  相似文献   

4.
青藏铁路多年冻土区路基结构的动力分析   总被引:1,自引:0,他引:1  
研究目的:本文对青藏铁路冻土路基在列车荷载下的结构动力进行了分析研究,为多年冻土区路基工程设计和铁路运营安全分析提供了依据。研究方法:以青藏铁路清水河多年冻土区试验段路基结构为工程背景,利用列车——轨道二维动力模型得到的道床底部列车荷载激励曲线,对冻土路基结构进行有限元时程反应分析,探讨冻融状态下路基的列车振动荷载效应。研究结论:无论是暖季融化还是寒季冻结状态,列车振动荷载产生的土体压应力都大大高于静荷载,车速对土体动应力反应有明显影响;冻结状态下,路基中下部土体的动力反应较大,而暖季融化时路基顶部土体对动应力有较显著的放大作用,因此,在工程设计和运营养护时应有针对性地对结构进行加强。  相似文献   

5.
青藏铁路多年冻土工程的探索与实践   总被引:7,自引:1,他引:7  
冉理 《铁道工程学报》2007,24(1):32-40,59
研究目的:青藏铁路格尔木一拉萨段全长1142km,是世界上海拔最高、跨越高原多年冻土地段里程最长的铁路,沿线自然环境恶劣,地质条件复杂,工程技术难度大,环境保护要求高,建设过程中面临着许多技术难题。文章从青藏高原多年冻土区特点及主要工程问题,科技攻关工作与采取的措施,所取得的主要阶段性成就等几个方面,对如何更好解决在高海拔多年冻土区修建铁路这一难题,把青藏铁路建设成为“世界一流高原铁路”,进行了深入的阐述,同时提出了需要进一步深化研究的问题。 研究结论:文章经过系统分析和研究,查清了线路通过地区多年冻土的热稳定性、含冰量和不良冻土现象的分布和变化规律,为攻克冻土难题提供了可靠的基础工作保证。对路基工程提出了“主动降温、冷却地基、保护冻土”的设计思想、治理原则和具体工程结构类型。  相似文献   

6.
研究目的:青藏铁路穿越连续多年冻土区546.43km,防止多年冻土融沉是青藏铁路路基工程设计施工面临的首要技术难题。为指导设计与施工,在青藏铁路多年冻土区工程大规模施工前,在具有代表性的北麓河、清水河、安多3个试验段,先期进行片石气冷、片石及碎石护坡、热棒、通风管路堤等主动保护多年冻土路基结构的试验研究。 研究结论:片石气冷、片石及碎石护坡、热棒、通风管路堤通过改变路基的结构和填料,调节辐射、对流、传导所传输的能量,增加多年冻土地基的冷储量,改善多年冻土地基的热状况,防止多年冻土地基融沉,是保护多年冻土的有效工程措施,适用于多年冻土区路基工程。青藏铁路格拉段多年冻土区路基长380.30km,其中片石气冷、碎石护坡、路基设置热棒的长度分别为117.69km、127.00km、32.0km。青藏铁路主动保护多年冻土路基结构试验工程至少已经过6个冻融循环,未发现路基融沉病害;2006年7月后,多年冻土区列车以100km/h速度的平稳运行,证明了经主动保护的多年冻土路基结构稳定可靠。  相似文献   

7.
多年冻土路基工程技术探索与实践   总被引:1,自引:0,他引:1  
简要总结了自上世纪六七十年代以来青藏铁路多年冻土路基工程技术探索与实践过程,认为青藏铁路多年冻土路基设计应以冻土地基稳定为核心,依据冻土年平均地温、含冰量、不良冻土现象及水文地质等,考虑全球气温升高及其他因素的影响,以科学试验为指导,采取主动保护冻土的措施动态设计,为列车快速通过高原提供技术保证。  相似文献   

8.
用冷却路基的方法修建青藏铁路   总被引:53,自引:6,他引:47  
青藏铁路将要穿越的多年冻土大多属高温冻土,其中近一半为高含冰量冻土。在全球转暖的情况下,青藏铁路的修建必须考虑50年~100年的气候变化。最近的预测认为,至2050年青藏高原将升温2 2℃~2 6℃。因而对该铁路修建成败的关键在于能否保护多年冻土,使其不融化。分析了世界上在冻土区筑路百年以上的历史,根据国内外在多年冻土区筑路的经验和教训,提出在青藏铁路的设计中应该改变单纯依靠增加热阻(增加路堤高度,使用保温材料)的消极的保护冻土的思路,全面采用"冷却路基"的积极的"降低地温"原则,特别在高温、高含冰量地段必须如此。并进一步提出了通过改变路堤的结构和材料来调控辐射,调控对流和调控传导,以达到"冷却路基"目的的具体措施。  相似文献   

9.
研究目的:分析青藏铁路施工区多年冻土上限的变化规律以及填筑铁路路基施工对下伏多年冻土赋存条 件的影响。 研究方法:系统分析埋设在青藏铁路清水河地区路基中2个断面内的共8个地温测试孔3年来采集的地温 观测资料,研究该地区铁路路基下伏高原多年冻土融化特征。 研究结论:由于受到填筑路基时赋存在路基填料内的热量的影响,铁路路基下伏多年冻土近地表的地温变 化特征与天然地面下的多年冻土的地温变化特征有明显的不同,且向阳面与被阴面差别较大。多年冻士的上限 在施工初期会有一个明显的下移沉降,随着时间的推移,虽然残存在路基中的热量逐渐消散,多年冻土上限下 降会逐渐稳定,但由于受到太阳辐射和路基边坡形状及融化夹层的影响,多年冻土上限会逐渐稳定,但不会在 短时期内上升到天然地面下多年冻土的上限水平。  相似文献   

10.
青藏铁路的建设背景 青藏铁路格尔木至拉萨段全长1142公里,是世界上海拔最高(线路最高点海拔5072米,经过海拔4000米以上路段长960公里)、所经冻土线路最长(5464公里)、自然条件最为艰苦的高原铁路。多年冻土、高寒缺氧和生态脆弱这三大世界性难题给青藏铁路建设和运营带来了极大困难。铁道部紧紧围绕建设世界一流高原铁路的目标,贯彻“列车运行时间最短,设备高可靠少维修,沿线基本实现”无人化“管理”的基本要求,大力弘扬“挑战极限、勇创一流”的青藏铁路精神,于2006年7月1日将这项宏伟工程提前一年全线通车,投入运营。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号