首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
64 m简支梁桥铺设无缝线路墩顶纵向水平线刚度研究   总被引:3,自引:2,他引:3  
针对桥上无缝线路纵向力的传递特点,运用线桥墩一体化计算分析模型,对64 m简支梁桥上无缝线路纵向力及梁轨的快速相对位移进行计算分析,提出了墩顶纵向水平线刚度的最小值,以指导大跨度简支梁桥上无缝线路设计。  相似文献   

2.
桥墩纵向水平线刚度对桥上无缝线路设计的影响   总被引:4,自引:0,他引:4  
桥墩纵向水平线刚度是桥梁和无缝线路设计的关键技术参数,桥上无缝线路钢轨与墩台纵向力的分配以及梁、轨位移的大小很大程度上取决于桥墩纵向水平线刚度。结合工程实际,以客运专线常见的60 m 100 m 60m连续梁为例,分析桥墩纵向线刚度对钢轨、墩台纵向力及梁、轨位移的影响规律。  相似文献   

3.
轨道交通U型梁桥下部结构纵向水平线刚度合理值研究   总被引:1,自引:0,他引:1  
针对轨道交通U型梁桥的具体结构形式,建立了桥上无缝线路梁轨相互作用空间非线性有限元计算模型。分析了轨道交通U型梁桥的无缝线路纵向附加力,并对轨道交通U型梁桥下部结构纵向水平线刚度合理值进行探讨。研究结果表明,我国《地铁设计规范》及《京沪高速铁路设计暂行规定》等规定的桥墩墩顶最小纵向水平线刚度值应用于轨道交通高架桥设计明显偏大,可适当放宽。  相似文献   

4.
结合广珠城际铁路的桥墩设计实例,探讨在路网密集的经济发达地区,如何经济合理的布置桥墩和选用墩型,确保既有和规划路网的通畅。同时在设计桥墩的造型时要注重与自然景观与城市建筑的和谐统一。  相似文献   

5.
在考虑不同轨温幅度变化,且不考虑梁端铺设钢轨伸缩调节器的情况下,采用强度指标及变形指标对地铁简支梁桥桥墩纵向水平刚度限值进行研究。结果表明:线路纵向阻力参数、列车制动荷载和轮轨黏着系数对桥墩纵向水平刚度限值的影响较大。在1.8倍列车荷载下,采用0.164摩擦因数时,建议30 m简支梁单双线制动工况下桥墩纵向水平刚度限值分别取100,180 kN/cm;35 m简支梁桥墩纵向水平刚度限值分别取150,220 kN/cm。采用0.250摩擦因数时,建议30 m简支梁单双线制动工况下桥墩纵向水平刚度限值分别取250,500 kN/cm;35 m简支梁桥墩纵向水平刚度限值分别取300,500 kN/cm。由于该计算结果为理论分析结果,采用的阻力参数、荷载参数等与实际是否相符合还需要进一步验证。  相似文献   

6.
基于梁轨相互作用原理,建立桥上无缝线路线桥墩一体化模型,研究主桥铺设小阻力扣件下单线连续梁桥墩纵向水平刚度的限值。研究结果表明:在主桥铺设小阻力扣件下,钢轨伸缩附加应力最大值与连续梁温度跨度及桥墩刚度近似呈线性关系;轨道结构稳定性和钢轨断缝对桥墩刚度限值均不起控制作用,桥墩刚度限值仅由钢轨强度控制;连续梁温度跨度较大时,桥墩刚度限值与温度跨度近似呈线性关系,对于温度跨度为240 m的连续梁,轨温变化幅度为50℃、40℃和30℃时,连续梁固定支座处桥墩刚度限值分别为1 282、522、226 k N/(cm·线)。  相似文献   

7.
墩顶纵向刚度是高速铁路桥上无缝线路设计的关键参数,也是影响跨海大桥经济性的重要因素。为研究长联跨海引桥墩顶纵向刚度合理取值,以某高速铁路长联跨海引桥为研究对象,基于梁轨相互作用理论,针对长联跨海引桥的特点,通过建立线-桥-墩一体化有限元模型进行计算研究,提出不同桥跨设计方案的墩顶纵向刚度建议值。主要研究结论如下:(1)作为长联跨海引桥无缝线路的重要参数,墩顶纵向刚度对无缝线路制动力、梁轨相对位移具有明显控制作用;(2)跨海引桥采用简支梁方案时,32,48,64 m混凝土简支梁的墩顶刚度应大于200 kN/cm, 80 m混凝土简支梁、96 m及112 m钢桁简支梁的墩顶刚度宜大于400,500,600 kN/cm;(3)跨海引桥采用3×80 m连续梁方案时,对于单固定墩连续梁、刚构桥、连续刚构桥3种方案,墩顶刚度限值宜取2 150,500 kN/cm和510 kN/cm(中间支座),240 kN/cm(梁端支座)。  相似文献   

8.
为研究客货共线100 m简支钢桁梁桥墩纵向水平刚度限值,建立了线-桥-墩一体化空间有限元模型,研究了桥墩纵向水平刚度对无缝线路受力特性的影响规律,以钢轨强度、梁轨相对位移和断缝值为控制指标,提出了客货共线100 m简支钢桁梁桥墩纵向水平刚度取值。结果表明,随着简支钢桁梁桥墩纵向水平刚度的增大,钢轨伸缩附加力增大,钢轨制动附加力和梁轨相对位移降低;对于100 m简支钢桁梁,控制桥墩纵向水平刚度的指标是钢轨强度,且受钢轨温度变化幅值影响较大;综合考虑钢轨附加力和桥梁工程经济性,通过全桥铺设小阻力扣件可显著降低桥墩纵向水平刚度限值,此时桥墩纵向水平刚度建议为1 400 kN/(cm·线);研究成果可为100 m简支钢桁梁的桥墩设计提供参考。  相似文献   

9.
南京地铁1号线高架桥无缝线路纵向力的研究   总被引:1,自引:0,他引:1  
根据南京地铁1号线高架结构梁轨设计的需要,进行桥梁与轨道相互作用的专题研究,提出优化的线路设计参数和连续梁无缝线路纵向力的计算方法,以及桥墩水平线刚度的取值,使高架桥结构的梁轨结构设计更加匹配、协调和经济合理,实现总体优化.  相似文献   

10.
广珠城际快速轨道交通工程的建设在我国尚属首次,目前尚属新型的交通形式,没有现成的桥梁技术标准以及相应的设计研究。介绍了广珠城际轨道交通简支梁的荷载标准、主要设计技术参数,梁高的确定、梁的截面形式及梁的经济性。  相似文献   

11.
客运专线连续梁桥墩线刚度限值探讨   总被引:1,自引:1,他引:1  
研究目的:近年来,连续梁已成为新建铁路及客运专线的常用梁型。新建铁路一次性铺设跨区间之缝线路已成为趋势,研究连续梁桥上无缝线路纵向力变化规律,探讨客运专线常见连续梁桥墩线刚度限值迫在眉睫。研究结果:提出客运专线常见连续梁桥墩线刚度限值,可指导桥梁和轨道的前期设计。  相似文献   

12.
高速铁路小跨度梁桥墩设计纵向水平刚度限值的探讨   总被引:1,自引:0,他引:1  
在学习和研究“九五”国家重点科技攻关成果《高速铁路线桥结构与技术条件(标准)的研究》中有关研究报告的基础上,分析论证了高速铁路小跨度梁桥墩设计纵向水平刚度和与之相制约的钢轨制动附加力的关系,概略地给出了跨度为12~32m梁桥墩设计最小纵向水平刚度限值的建议值。  相似文献   

13.
200 km/h客货共线铁路的建设在我国刚刚起步,列车的运行速度与常规铁路相比,有了质的变化,列车行驶时安全、舒适和平稳的要求大大加强,在高度较高的桥梁设计中如何满足这些要求,又合理控制工程量是我们应当认真研究的课题,本文通过对遂渝铁路桥梁的动力分析,得出一些桥墩横向静力刚度参考限值确定的初步方法.  相似文献   

14.
为探究桥梁与轨道参数对无缝线路纵向受力变形的影响,建立跨度64 m简支梁桥上CRTSⅢ型无砟轨道无缝线路空间耦合有限元模型,分析复杂荷载下扣件阻力、弹性缓冲垫层及桥墩纵向刚度等参数对无缝线路的影响.研究结果表明:小阻力扣件可减小钢轨纵向力、缓冲凹槽和凸台间的相互作用,但会增加梁-轨相对位移,无砟轨道64 m简支梁桥上铺...  相似文献   

15.
中小跨度长联连续梁桥桥上无缝线路纵向力的研究   总被引:4,自引:1,他引:3  
针对固定墩组和拉压连接器两种桥梁结构,分析计算长联连续梁桥无缝线路纵向力。根据桥梁、钢轨的相互作用关系,建立纵向力计算模型,应用该模型,分析比较了桥梁联长、桥墩刚度以及轮轨粘着系数对纵向力的影响。根据附加纵向力的大小以及长钢轨伸缩位移量,提出了长联连续梁的最大联长,在连续梁中间设置钢轨伸缩调节器时,固定墩组桥梁体系连续梁联长应小于500m~600m,拉压连接器桥梁体系连续梁联长应小于1000m~1200m。研究结果表明,桥上无缝线路长钢轨的附加纵向力与桥墩的刚度有关,刚度减小,长钢轨的附加纵向力增加,对桥上无缝线路的强度和稳定性不利,根据长钢轨附加制动力的大小,提出了不同联长的连续梁桥墩刚度的最小限值。  相似文献   

16.
城市轨道交通高架桥墩纵向刚度设计合理值探讨   总被引:4,自引:0,他引:4  
根据城市轨道交通的特点制定合理墩台纵向刚度限值标准以提高轨道交通建设设计质量,减少不必要的工程投资是一项十分重要的工作.介绍了城轨高架桥墩纵向刚度设计限值依据和存在的问题.从高速铁路与城市轨道交通两者之间列车设计荷载的差别,分析了城市轨道交通高架线路桥墩纵向刚度放松最小设计限值的可行性.对上海轨道交通3号线既有墩台纵向刚度实际状况做了调研,验证了理论分析的合理性.南京、武汉等城市高架线路和上海轨道交通11号线南段工程的研究结果均表明,现行规范中桥墩纵向刚度限值存在很大的下调空间.  相似文献   

17.
桥墩纵向水平刚度对桥上无缝道岔的影响   总被引:1,自引:1,他引:0  
为了进一步研究桥上无缝道岔,通过计算,分析桥墩纵向水平刚度在连续梁桥上对钢轨、道岔、墩台等结构部件受力及变形的影响。本文采用ANSYS软件建立桥上无缝道岔的岔—桥—墩纵向相互作用一体化模型,并进行力学分析。研究结果是:随着连续梁桥桥墩刚度的增大,基本轨伸缩附加力减小,连续梁桥墩的纵向力增大;增大连续梁桥墩纵向水平刚度对铺设于其上的无缝道岔的受力与变形是有利的。  相似文献   

18.
上海长江大桥桥墩纵向刚度研究   总被引:2,自引:2,他引:0  
上海长江大桥预留轨道交通并铺设无缝线路,桥墩纵向刚度直接影响铜轨强度。通过3种不同铺设方案的综合比较,提出大桥引桥部分采用双固定墩设计,这样调节器铺设数量最少,对已完成施设的大桥改动也很小采用两种不同的计算方法对大桥每联钢轨附加应力逐一检算,结果可行。  相似文献   

19.
为研究城市轨道交通简支梁桥墩顶纵向刚度限值,建立20孔跨度均为30 m简支梁桥无缝线路计算模型,以钢轨强度、梁轨(板)相对位移和钢轨断缝值为控制指标,分析了墩顶纵向刚度对桥上无缝线路受力特性的影响。研究表明:随着墩顶纵向刚度增大,钢轨伸缩附加力增大,钢轨制动附加力和梁轨(板)相对位移降低;对于简支梁桥,控制墩顶纵向刚度的决定性指标是梁轨(板)相对位移;考虑一定的安全余量,建议30 m简支梁桥墩顶纵向刚度限值为双线240 kN/cm。为降低工程造价,可基于梁轨相互作用原理确定桥墩纵向刚度限值。  相似文献   

20.
王伟华 《中国铁路》2023,(4):100-107
为探究多联连续刚构桥与无缝线路相互作用规律,研究梁轨相互作用,建立城际铁路4×40 m连续刚构桥与无缝线路有限元计算模型,分析不同体系刚度、桥墩沉降对钢轨纵向力、扣件垂向力、桥墩附加力的影响。研究结果表明:刚构桥体系刚度增加有利于无缝线路受力,随着体系纵向刚度的增加,无缝线路伸缩力与制动力均降低,制动力所受的影响更大,伸缩力所受影响不明显。温度工况下路桥过渡处桥墩受附加力最不利,其余联桥墩附加力基本相同;断轨工况下断轨所在两联桥墩受力最不利,桥墩附加力向远端逐渐衰减。钢轨与扣件受力随着桥墩沉降量的增加而线性增大,次边墩沉降引起的扣件拉力值更大,在运营过程中应重点关注。研究成果可为多联4×40 m连续刚构桥铺设无缝线路提供理论指导。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号