首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The paper describes a new method of optimizing traffic signal settings. The area-wide urban traffic control system developed in the paper is based on the Bee Colony Optimization (BCO) technique. The BCO method is based on the principles of the collective intelligence applied by the honeybees during the nectar collecting process. The optimal (or near-optimal) values of cycle length, offsets, and splits are discovered by minimizing the total travel time of all network users travelling through signalized intersections. The set of numerical experiments is performed on well-known traffic benchmark network. The results obtained by the BCO approach are compared with the results found by Simulated Annealing (SA). It has been shown that the suggested BCO approach outperformed the SA.  相似文献   

2.
In this paper we study the problem of determining the optimum cycle and phase lengths for isolated signalized intersections. Calculation of the optimal cycle and green phase lengths is based on the minimization of the average control delay experienced by all vehicles that arrive at the intersection within a given time period. We consider under-saturated as well as over-saturated conditions at isolated intersections. The defined traffic signal timing problem, that belongs to the class of combinatorial optimization problems, is solved using the Bee Colony Optimization (BCO) metaheuristic approach. The BCO is a biologically inspired method that explores collective intelligence applied by honey bees during the nectar collecting process. The numerical experiments performed on some examples show that the proposed approach is competitive with other methods. The obtained results show that the proposed approach is capable of generating high-quality solutions within negligible processing times.  相似文献   

3.
Abstract

In order for traffic authorities to attempt to prevent drink driving, check truck weight limits, driver hours and service regulations, hazardous leaks from trucks, and vehicle equipment safety, we need to find answers to the following questions: (a) What should be the total number of inspection stations in the traffic network? and (b) Where should these facilities be located? This paper develops a model to determine the locations of uncapacitated inspection stations in a traffic network. We analyze two different model formulations: a single-objective optimization problem and a multi-objective optimization problem. The problems are solved by the Bee Colony Optimization (BCO) method. The BCO algorithm belongs to the class of stochastic swarm optimization methods, inspired by the foraging habits of bees in the natural environment. The BCO algorithm is able to obtain the optimal value of objective functions in all test problems. The CPU times required to find the best solutions by the BCO are found to be acceptable.  相似文献   

4.
Dispatchers in many public transit companies face the daily problem of assigning available buses to bus routes under conditions of bus shortages. In addition to this, weather conditions, crew absenteeism, traffic accidents, traffic congestion and other factors lead to disturbances of the planned schedule. We propose the Bee Colony Optimization (BCO) algorithm for mitigation of bus schedule disturbances. The developed model takes care of interests of the transit operator and passengers. The model reassigns available buses to bus routes and, if it is allowed, the model simultaneously changes the transportation network topology (it shortens some of the planned bus routes) and reassigns available buses to a new set of bus routes. The model is tested on the network of Rivera (Uruguay). Results obtained show that the proposed algorithm can significantly mitigate disruptions.  相似文献   

5.
In this paper we present a novel method to improve the robustness of solutions to the Flight-to-Gate Assignment Problem (FGAP), with the aim to reduce the need for gate re-planning due to unpredicted flight schedule disturbances in the daily operations at an airport. We propose an approach in which the deterministic gate constraints are replaced by stochastic gate constraints that incorporate the inherent stochastic flight delays in such a way so as to ensure that the expected gate conflict probability of two flights assigned to the same gate at the same time does not exceed a user-specified value. The novel approach is integrated into an existing multiple time slot FGAP model that relies on a binary integer programming formulation and is tested using real-life data pertaining to Amsterdam Airport Schiphol. The results confirm that the proposed approach holds out great promise to improve the robustness of the FGAP solutions.  相似文献   

6.
Disruptions in carrying out planned bus schedules occur daily in many public transit companies. Disturbances are often so large that it is necessary to perform re-planning of planned bus and crew activities. Dispatchers in charge of traffic operations must frequently find an answer to the following question in a very short period of time: How should available buses be distributed among bus routes in order to minimize total passengers' waiting time on the network? We propose a model for assigning buses to scheduled routes when there is a shortage of buses. The proposed model is based on the bee colony optimization (BCO) technique. It is a biologically inspired method that explores collective intelligence applied by honey bees during the nectar collecting process. It has been shown that this developed BCO approach can generate high-quality solutions within negligible processing times.  相似文献   

7.
The traditional distribution planning problem in a supply chain has often been studied mainly with a focus on economic benefits. The growing concern about the effects of anthropogenic pollutions has forced researchers and supply chain practitioners to address the socio-environmental concerns. This research study focuses on incorporating the environmental impact on route design problem. In this work, the aim is to integrate both the objectives, namely economic cost and emission cost reduction for a capacitated multi-depot green vehicle routing problem. The proposed models are a significant contribution to the field of research in green vehicle routing problem at the operational level. The formulated integer linear programming model is solved for a set of small scale instances using LINGO solver. A computationally efficient Ant Colony Optimization (ACO) based meta-heuristic is developed for solving both small scale and large scale problem instances in reasonable amount of time. For solving large scale instances, the performance of the proposed ACO based meta-heuristic is improved by integrating it with a variable neighbourhood search.  相似文献   

8.
This paper introduces a fuzzy preference based model of route choice. The core of the model is FiPV (Fuzzy individuelle Präferenzen von Verkehrsteilnehmern or fuzzy traveler preferences), that is a choice function based on fuzzy preference relations for travel decisions. The proposed model may be the first application of fuzzy individual choice in traffic assignment and probably also the first in this class to consider the spatial knowledge of individual travelers. It is argued that travelers do not or cannot always follow the maximization principle. Therefore we formulate a model that also takes into account the travelers with non-maximizing behavior. The model is based on fuzzy preference relations, of which elements are fuzzy pairwise comparisons between the available alternatives.  相似文献   

9.
Traffic metering offers great potential to reduce congestion and enhance network performance in oversaturated urban street networks. This paper presents an optimization program for dynamic traffic metering in urban street networks based on the Cell Transmission Model (CTM). We have formulated the problem as a Mixed-Integer Linear Program (MILP) capable of metering traffic at network gates with given signal timing parameters at signalized intersections. Due to the complexities of the MILP model, we have developed a novel and efficient solution approach that solves the problem by converting the MILP to a linear program and several CTM simulation runs. The solution algorithm is applied to two case studies under different conditions. The proposed solution technique finds solutions that have a maximum gap of 1% of the true optimal solution and guarantee the maximum throughput by keeping some vehicles at network gates and only allowing enough vehicles to enter the network to prevent gridlocks. This is confirmed by comparing the case studies with and without traffic metering. The results in an adapted real-world case study network show that traffic metering can increase network throughput by 4.9–38.9% and enhance network performance.  相似文献   

10.
This paper proposes three enhanced semi-supervised clustering algorithms, namely the Constrained-K-Means (CKM), the Seeded-K-Means (SKM), and the Semi-Supervised Fuzzy c-Means (SFCM), to identify probe vehicle trajectories in the mixed traffic corridor. The proposed algorithms are able to take advantage of the strengthens of topological relation judgment and the semi-supervised learning technique by optimizing the selection of pre-labeling samples and initial clustering centers of the original semi-supervised learning technique based on horizontal Global Positioning System data. The proposed algorithms were validated and evaluated based on the probe vehicle data collected at two mixed corridors on Shanghai’s urban expressways. Results indicate that the enhanced SFCM algorithm could achieve the best performance in terms of clustering purity and Normalized Mutual Information, followed by the CKM algorithm and the SKM algorithm. It may reach a nearly 100% clustering purity for the uncongested conditions and a clustering purity greater than 80% for the congested conditions. Meanwhile, it could improve clustering purity averagely by 21% and 14% for the congested conditions and 6.5% and 6% for the uncongested conditions, as compared with the traditional K-Means algorithm and the basic SFCM. The proposed algorithms can be applied for both on-line and off-line purposes, without the need of historical data. Clustering accuracies under different traffic conditions and possible improvements with the use of historical data are also discussed.  相似文献   

11.
Bus stops are integral elements of a transit system and as such, their efficient inspection and maintenance is required, for proper and attractive transit operations. Nevertheless, spatial dispersion and the extensive number of bus stops, even for mid-size transit systems, complicates scheduling of inspection and maintenance tasks. In this context, the problem of scheduling transit stop inspection and maintenance activities (TSIMP) by a two-stage optimization approach, is formulated and discussed. In particular, the first stage involves districting of the bus stop locations into areas of responsibility for different inspection and maintenance crews (IMCs), while in the second stage, determination of the sequence of bus stops to be visited by an IMC is modelled as a vehicle routing problem. Given the complexity of proposed optimization models, advanced versions of different metaheuristic algorithms (Harmony Search and Ant Colony Optimization) are exploited and assessed as possible options for solving these models. Furthermore, two variants of ACO are implemented herein; one implemented into a CPU parallel computing environment along with an accelerated one by means of general-purpose graphics processing unit (GPGPU) computing. The model and algorithms are applied to the Athens (Greece) bus system, whose extensive number of transit stops (over 7500) offers a real-world test bed for assessing the potential of the proposed modelling approach and solution algorithms. As it was shown for the test example examined, both algorithms managed to achieve optimized solutions for the problem at hand while there were fund robust with respect to their algorithmic parameters. Furthermore, the use of graphics processing units (GPU) managed to reduce of computational time required.  相似文献   

12.
The use of alternative energy sources instead of HFO has been recognized as a promising way for reducing emissions from shipping and promoting the development of green shipping. However, it is usually difficult for the decision-making to select the best choice among multiple alternative marine fuels. In order to address this, a complete criteria system for sustainability assessment of alternative marine fuels was firstly established, and a fuzzy group multi-criteria decision making method has been developed to rank the alternative marine fuels by combining fuzzy logarithmic least squares and fuzzy TOPSIS (Technique for Order Performance by Similarity to Ideal Solution). Fuzzy logarithmic least squares method has been employed to determine the weights of the criteria for sustainability assessment, and fuzzy TOPSIS was employed to determine the sustainability order of the alternatives. An illustrative case with three alternative marine fuels including methanol, LNG and hydrogen has been studied by the proposed method, and hydrogen has been recognized as the most sustainable scenario, follows by LNG, and methanol in the descending order. The results show that the proposed method is feasible for prioritizing the alternative marine fuels; it also has the ability to help the decision-makers to select the most sustainable option among multiple marine fuels.  相似文献   

13.
Traffic signals on urban highways force vehicles to stop frequently and thus causes excessive travel delay, extra fuel consumption and emissions, and increased safety hazards. To address these issues, this paper proposes a trajectory smoothing method based on Individual Variable Speed Limits with Location Optimization (IVSL-LC) in coordination with pre-fixed traffic signals. This method dynamically imposes speed limits on some identified Target Controlled Vehicles (TCVs) with Vehicle to Infrastructures (V2I) communication ability at two IVSL points along an approaching lane. According to real-time traffic demand and signal timing information, the trajectories of each approaching vehicle are made to run smoothly without any full stop. Essentially, only TCVs’ trajectories need to be controlled and the other vehicles just follow TCVs with Gipps’ car-following model. The Dividing RECTangles (DIRECT) algorithm is used to optimize the locations of the IVSLs. Numerical simulation is conducted to compare the benchmark case without vehicle control, the individual advisory speed limits (IASL) and the proposed IVSL-LC. The result shows that compared with the benchmark, the IVSL-LC method can greatly increase traffic efficiency and reduce fuel consumption. Compared with IASL, IVSL-LC has better performance across all traffic demand levels, and the improvements are the most under high traffic demand. Finally, the results of compliance analysis show that the effect of IVSL-LC improves as the compliance rate increases.  相似文献   

14.
Abstract

Estimation of the origin–destination (O–D) trip demand matrix plays a key role in travel analysis and transportation planning and operations. Many researchers have developed different O–D matrix estimation methods using traffic counts, which allow simple data collection as opposed to the costly traditional direct estimation methods based on home and roadside interviews.

In this paper, we present a new fuzzy model to estimate the O–D matrix from traffic counts. Since link data only represent a snapshot situation, resulting in inconsistency of data and poor quality of the estimated O–Ds, the proposed method considers the link data as a fuzzy number that varies within a certain bandwidth. Shafahi and Ramezani's fuzzy assignment method is improved upon and used to assign the estimated O–D matrix, which causes the assigned volumes to be fuzzy numbers similar to what is proposed for observed link counts. The shortest path algorithm of the proposed method is similar to the Floyd–Warshall algorithm, and we call it the Fuzzy Floyd–Warshall Algorithm. A new fuzzy comparing index is proposed by improving the fuzzy comparison method developed by Dubois and Prade to estimate and compare the distance between the assigned and observed link volumes. The O–D estimation model is formulated as a convex minimization problem based on the proposed fuzzy index to minimize the fuzzy distance between the observed and assigned link volumes. A gradient-based method is used to solve the problem. To ensure the original O–D matrix does not change more than necessary during the iterations, a fuzzy rule-based approach is proposed to control the matrix changes.  相似文献   

15.
Abstract

This paper presents a novel application of a Method of Inequality-based Multi-objective Genetic Algorithm (MMGA) to generate an efficient time-effective multi-fleet aircraft routing algorithm in response to the schedule disruption of short-haul flights. It attempts to optimize objective functions involving ground turn-around times, flight connections, flight swaps, total flight delay time and a 30-minute maximum delay time of original schedules. The MMGA approach, which combines a traditional Genetic Algorithm (GA) with a multi-objective optimization method, can address multiple objectives at the same time, then explore the optimal solution. The airline schedule disruption management problem is traditionally solved by Operations Research (OR) techniques that always require a precise mathematical model. However, airline operations involve too many factors that must be considered dynamically, making a precise mathematical model difficult to define. Experimental results based on a real airline flight schedule demonstrate that the proposed method, Multi-objective Optimization Airline Disruption Management by GA, can recover the perturbation efficiently within a very short time. Our results further demonstrate that the application can yield high quality solutions quickly and, consequently, has potential to be employed as a real-time decision support tool for practical complex airline operations.  相似文献   

16.
The paper deals with the observability problem in traffic networks, including route, origin?Cdestination and link flows, based on number plate scanning and link flow observations. A revision of the main observability concepts and methods is done using a small network. Starting with the full observability of the network based only on number plate scanning on some links, the number of scanned links is reduced and replaced by counted link flows, but keeping the full observability of all flows in the network. In this way, the cost can be substantially reduced. To this end, several methods are given and discussed, and two small and one real case of networks are used to illustrate the proposed methodologies. Finally, some conclusions and final recommendations are included.  相似文献   

17.
We consider the assignment of gates to arriving and departing flights at a large hub airport. This problem is highly complex even in planning stage when all flight arrivals and departures are assumed to be known precisely in advance. There are various considerations that are involved while assigning gates to incoming and outgoing flights (such a flight pair for the same aircraft is called a turn) at an airport. Different gates have restrictions, such as adjacency, last‐in first‐out gates and towing requirements, which are known from the structure and layout of the airport. Some of the cost components in the objective function of the basic assignment model include notional penalty for not being able to assign a gate to an aircraft, penalty for the cost of towing an aircraft with a long layover, and penalty for not assigning preferred gates to certain turns. One of the major contributions of this paper is to provide mathematical model for all these complex constraints that are observed at a real airport. Further, we study the problem in both planning and operations modes simultaneously, and such an attempt is, perhaps, unique and unprecedented. For planning mode, we sequentially introduce new additional objectives to our gate assignment problem that have not been studied in the literature so far—(i) maximization of passenger connection revenues, (ii) minimization of zone usage costs, and (iii) maximization of gate plan robustness—and include them to the model along with the relevant constraints. For operations mode, the main objectives studied in this paper are recovery of schedule by minimizing schedule variations and maintaining feasibility by minimal retiming in the event of major disruptions. Additionally, the operations mode models must have very, very short run times of the order of a few seconds. These models are then applied to a functional airline at one of its most congested hubs. Implementation is carried out using Optimization Programming Language, and computational results for actual data sets are reported. For the planning mode, analyst perception of weights for the different objectives in the multi‐objective model is used wherever actual dollar value of the objective coefficient is not available. The results are also reported for large, reasonable changes in objective function coefficients. For the operations mode, flight delays are simulated, and the performance of the model is studied. The final results indicate that it is possible to apply this model to even large real‐life problems instances to optimality within short run times with clever formulation of conventional continuous time assignment model. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
The analysis of complex networks has been carried out in different fields using an ample variety of method and concepts. Recently, in the general literature of regional economics, the concepts of resilience, connectivity, vulnerability and criticality have been gaining their momentum. The aim of this paper is to provide an analytical framework, using well-known accessibility indicators, in order to calculate the critical links or road sections of the Spanish high-capacity road network. Our analysis will be based on approximately four hundred sections that will be classified in five different groups according to their criticality degree in the whole network. Our analysis will be complemented with the comparison of the results obtained in five different scenarios, namely the average criticality using the effects on the whole country, Madrid, Barcelona, Valencia and Pontevedra. Furthermore, the paper will also analyze what kind of intrinsic characteristics of the sections favor or not the links’ criticality using a method based on a classification and regression tree. This analysis is crucial to understand other important concepts that are recently being studied in network and spatial economics, like, for example, resilience and vulnerability. It is concluded that the number of relations or routes, being a trunk or not, the road density and the time to Madrid capital play an important role in the criticality of the roads section in the high capacity road network.  相似文献   

19.
The task of assigning arriving flights at an airport to the available gates is a key activity in airline station operations. With the development of large connecting hub operations, and the resulting volumes of passengers and baggage transferring between flights, the complexity of the task and the number of factors to be considered have increased significantly. Traditional approaches utilizing classical operations research techniques have difficulty with uncertain information and multiple performance criteria, and do not adapt well to the needs of real-time operations support. As a result, several airlines have been exploring the use of expert systems for operational control of ramp activity.This paper discusses the factors that arise in deciding how to allocate flights to gates, and describes the knowledge base structure, data requirements and inference process of an expert system that would recommend gate allocation decisions to ramp control personnel, taking into account the constraints imposed by the available facilities and personnel to handle the aircraft, and the consequences on downstream operations of particular assignment decisions. The paper describes how these concepts have been implemented in a prototype expert system that has been designed to address a restricted set of gate assignment issues within a framework that could be extended to consider a broader range of factors. The operation of the expert system is illustrated through a case study application to a typical flight schedule at a major hub airport.  相似文献   

20.
The aim of this study is to estimate both the physical and schedule-based connections of metro passengers from their entry and exit times at the gates and the stations, a data set available from Smart Card transactions in a majority of train networks. By examining the Smart Card data, we will observe a set of transit behaviors of metro passengers, which is manifested by the time intervals that identifies the boarding, transferring, or alighting train at a station. The authenticity of the time intervals is ensured by separating a set of passengers whose trip has a unique connection that is predominantly better by all respects than any alternative connection. Since the connections of such passengers, known as reference passengers, can be readily determined and hence their gate times and stations can be used to derive reliable time intervals. To detect an unknown path of a passenger, the proposed method checks, for each alternative connection, if it admits a sequence of boarding, middle train(s), and alighting trains, whose time intervals are all consistent with the gate times and stations of the passenger, a necessary condition of a true connection. Tested on weekly 32 million trips, the proposed method detected unique connections satisfying the necessary condition, which are, therefore, most likely true physical and schedule-based connections in 92.6 and 83.4 %, respectively, of the cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号