共查询到20条相似文献,搜索用时 15 毫秒
1.
Trajectory optimisation has shown good potential to reduce environmental impact in aviation. However, a recurring problem is the loss in airspace capacity that fuel optimal procedures pose, usually overcome with speed, altitude or heading advisories that lead to more costly trajectories. This paper aims at the quantification in terms of fuel and time consumption of implementing suboptimal trajectories in a 4D trajectory context that use required times of arrival at specific navigation fixes. A case study is presented by simulating conflicting Airbus A320 departures from two major airports in Catalonia. It is shown how requiring an aircraft to arrive at a waypoint early or late leads to increased fuel burn. In addition, the efficiency of such methods to resolve air traffic conflicts is studied in terms of both fuel burn and resulting aircraft separations. Finally, various scenarios are studied reflecting various airline preferences with regards to cost and fuel burn, as well as different route and conflict geometries for a broader scope of study. 相似文献
2.
This paper introduces a linear holding strategy based on prior works on cruise speed reduction, aimed at performing airborne delay at no extra fuel cost, as a complementary strategy to current ground and airborne holding strategies. Firstly, the equivalent speed concept is extended to climb and descent phases through an analysis of fuel consumption and speed from aircraft performance data. This gives an insight of the feasibility to implement the concept, differentiating the case where the cruise flight level initially requested is kept and the case where it can be changed before departure in order to maximize the linear holding time. Illustrative examples are given, where typical flights are simulated using an optimal trajectory generation tool where linear holding is maximized while keeping constant the initially planned fuel. Finally, the effects of linear holding are thoroughly assessed in terms of the vertical trajectory profiles, range of feasible speed intervals and trade-offs between fuel and time. Results show that the airborne delay increases significantly with nearly 3-fold time for short-haul flights and 2-fold for mid-hauls to the cases in prior works. 相似文献
3.
Airport surface congestion results in significant increases in taxi times, fuel burn and emissions at major airports. This paper describes the field tests of a congestion control strategy at Boston Logan International Airport. The approach determines a suggested rate to meter pushbacks from the gate, in order to prevent the airport surface from entering congested states and to reduce the time that flights spend with engines on while taxiing to the runway. The field trials demonstrated that significant benefits were achievable through such a strategy: during eight four-hour tests conducted during August and September 2010, fuel use was reduced by an estimated 12,250–14,500 kg (4000–4700 US gallons), while aircraft gate pushback times were increased by an average of only 4.4 min for the 247 flights that were held at the gate. 相似文献
4.
Current technological advances in communications and navigation have improved air traffic management (ATM) with new decision support tools to balance airspace capacity with user demands. Despite agreements achieved in flying reference business trajectories (RBTs) among different stakeholders, tight spatio-temporal connectivity between trajectories in dense sectors can cause perturbations that might introduce time or space deviations into the original RBTs, thus potentially affecting other 4D trajectories. In this paper, several challenging results are presented by properly tuning the Calculated Take-Off Times (CTOTs) as a tool for mitigating the propagation of perturbations between trajectories that can readily appear in dense sectors. Based on the identification of “collective microregions”, a tool for predicting potential spatio-temporal concurrence events between trajectories over the European airspace was developed, together with a CTOT algorithm to sequence the departures that preserve the scheduled slots while relaxing tight trajectory interactions. The algorithm was tested by considering a realistic scenario (designed and analyzed in the STREAM project (Stream, 2013)) to evaluate relevant ATM KPIs that provide aggregated information about the sensitivity of the system to trajectory interactions, taking into account the system dynamics at a network level. The proposed approach contributes to enhancing the ATM capacity of airports to mitigate network perturbations. 相似文献
5.
Congestion in Terminal Maneuvering Area (TMA) in hub airports is the main problem in Chinese air transportation. In this paper we propose a new system to integrated sequence and merge aircraft to parallel runways at Beijing Capital International Airport (BCIA). This system is based on the advanced avionics capabilities. Our methodology integrates a Multi-Level Point Merge (ML-PM) system, an economical descent approaches procedure, and a tailored heuristic algorithm to find a good, systematic, operationally-acceptable solution. First, Receding Horizontal Control (RHC) technique is applied to divide the entire 24 h of traffic into several sub-problems. Then in each sub-problem, it is optimized on given objectives (conflict, deviation from Estimated Time of Arrival (ETA) on the runway and makespan of the arrival flow). Four decision variables are designed to control the trajectory: the entry time, the entry speed, the turning time on the sequencing leg, and the landing runway allocation. Based on these variables, the real time trajectories are generated by the simulation module. Simulated Annealing (SA) algorithm is used to search the best solution for aircraft to execute. Finally, the conflict-free, least-delay, and user-preferred trajectories from the entry point of TMA to the landing runway are defined. Numerical results show that our optimization system has very stable de-conflict performance to handle continuously dense arrivals in transition airspace. It can also provide the decision support to assist flow controllers to handle the asymmetric arrival flows on different runways with less fuel consumption, and to assist tactical controllers to easily re-sequence aircraft with more relaxed position shifting. Moreover, our system can provide the fuel consumption prediction, and runway assignment information to assist airport and airlines managers for optimal decision making. Theoretically, it realizes an automated, cooperative and green control of routine arrival flows. Although the methodology defined here is applied to the airport BCIA, it could also be applied to other airports in the world. 相似文献
6.
The Air Traffic Management system is under a paradigm shift led by NextGen and SESAR. The new trajectory-based Concept of Operations is supported by performance-based trajectory predictors as major enablers. Currently, the performance of ground-based trajectory predictors is affected by diverse factors such as weather, lack of integration of operational information or aircraft performance uncertainty.Trajectory predictors could be enhanced by learning from historical data. Nowadays, data from the Air Traffic Management system may be exploited to understand to what extent Air Traffic Control actions impact on the vertical profile of flight trajectories.This paper analyses the impact of diverse operational factors on the vertical profile of flight trajectories. Firstly, Multilevel Linear Models are adopted to conduct a prior identification of these factors. Then, the information is exploited by trajectory predictors, where two types are used: point-mass trajectory predictors enhanced by learning the thrust law depending on those factors; and trajectory predictors based on Artificial Neural Networks.Air Traffic Control vertical operational procedures do not constitute a main factor impacting on the vertical profile of flight trajectories, once the top of descent is established. Additionally, airspace flows and the flight level at the trajectory top of descent are relevant features to be considered when learning from historical data, enhancing the overall performance of the trajectory predictors for the descent phase. 相似文献
7.
Three decades of research studies in ground delay program (GDP) decision-making, and air traffic flow management in general, have produced several analytical models and decision support tools to design GDPs with minimum delay costs. Most of these models are centralized, i.e., the central authority almost completely decides the GDP design by optimizing certain centralized objectives. In this paper, we assess the benefits of an airline-driven decentralized approach for designing GDPs. The motivation for an airline-driven approach is the ability to incorporate the inherent differences between airlines when prioritizing, and responding to, different GDP designs. Such differences arise from the airlines’ diverse business objectives and operational characteristics. We develop an integrated platform for simulating flight operations during GDPs, an airline recovery module for mimicking the recovery actions of each individual airline under a GDP, and an algorithm for fast solution of the recovery problems to optimality. While some of the individual analytical components of our framework, model and algorithm share certain similarities with those used by previous researchers, to the best of our knowledge, this paper presents the first comprehensive platform for simulating and optimizing airline operations under a GDP and is the most important technological contribution of this paper. Using this framework, we conduct detailed computational experiments based on actual schedule data at three of the busiest airports in the United States. We choose the recently developed Majority Judgment voting and grading method as our airline-driven decentralized approach for GDP design because of the superior theoretical and practical benefits afforded by this approach as shown by multiple recent studies. The results of our evaluation suggest that adopting this airline-driven approach in designing the GDPs consistently and significantly reduces airport-wide delay costs compared to the state-of-the-research centralized approaches. Moreover, the cost reduction benefits of the resultant airline-driven GDP designs are equitably distributed across different airlines. 相似文献
8.
The full benefits of Continuous Climb Operations (CCO) are realised when CCO are performed without interruption. However, CCO require safe departures that necessarily implies a reduction in capacity at high density traffic airports. This paper quantifies the capacity impact due to the integration of CCO (conflict-free with other departures and arrivals) in a high density traffic airport. The methodology develops a scheduling algorithm, a conflict-detection and resolution algorithm, and Monte Carlo simulations. The scheduling algorithm calculates two schedules, one for departures and another for arrivals, considering the CCO Rate. The conflict-detection and resolution algorithm compares CCO and arrival trajectories to detect which aircraft pairs are in conflict. The Air Traffic Control (ATC) intervention required to solve the conflict is modelled by delaying the CCO take-off. Numerical simulations based on Monte Carlo techniques are used to analyse scheduling combinations that are statistically significant in terms of conflict, ATC interventions, total delay and capacity. The results show a 32% reduction in the maximum theoretical capacity with a CCO Rate of 100%. Despite the reduction, the number of CCO departures is above the maximum operational capacity (50% of the maximum theoretical capacity). This implies that with optimised scheduling it is possible for all departures to be CCO. 相似文献
9.
Objectives: The objective of the presented work is to present novel methods for big data exploration in the Air Traffic Control (ATC) domain. Data is formed by sets of airplane trajectories, or trails, which in turn records the positions of an aircraft in a given airspace at several time instants, and additional information such as flight height, speed, fuel consumption, and metadata (e.g. flight ID). Analyzing and understanding this time-dependent data poses several non-trivial challenges to information visualization.Materials and methods: To address this Big Data challenge, we present a set of novel methods to analyze aircraft trajectories with interactive image-based information visualization techniques.As a result, we address the scalability challenges in terms of data manipulation and open questions by presenting a set of related visual analysis methods that focus on decision-support in the ATC domain. All methods use image-based techniques, in order to outline the advantages of such techniques in our application context, and illustrated by means of use-cases from the ATC domain.Results: For each considered use-case, we outline the type of questions posed by domain experts, data involved in addressing these questions, and describe the specific image-based techniques we used to address these questions. Further, for each of the proposed techniques, we describe the visual representation and interaction mechanisms that have been used to address the above-mentioned goals. We illustrate these use-cases with real-life datasets from the ATC domain, and show how our techniques can help end-users in the ATC domain discover new insights, and solve problems, involving the presented datasets. 相似文献
10.
An adaptive prediction model of level flight time uncertainty is derived as a function of flight and meteorological conditions, and its effectiveness for ground-based 4D trajectory management is discussed. Flight time uncertainty inevitably increases because of fluctuations in meteorological conditions, even though the Mach number, flight altitude and direction are controlled constant. Actual flight data collected using the secondary surveillance radar Mode S and numerical weather forecasts are processed to obtain a large collection of flight time error and flight and meteorological conditions. Through the law of uncertainty propagation, an adaptive prediction model of flight time uncertainty is derived as a function of the Mach number, flight distance, wind, and temperature. The coefficients of the adaptive prediction model is determined through cluster analysis and linear regression analysis. It is clearly demonstrated that the proposed adaptive prediction model can estimate the flight time uncertainty without underestimation or overestimation, even under moderate or severe weather conditions. The proposed adaptive prediction is able to improve both safety and efficiency of 4D trajectory management simultaneously. 相似文献
12.
In this paper, an efficient trajectory planning system is proposed to solve the integration of arrivals and departures on parallel runways with a novel route network system. Our first effort is made in designing an advanced Point Merge (PM) route network named Multi-Level Point Merge (ML-PM) to meet the requirements of parallel runway operations. Then, more efforts are paid on finding a complete and efficient framework capable of dynamically modelling the integration of arrival and departure trajectories on parallel runways, modelling the conflict detection and resolution in presence of curved trajectory and radius-to-fix merging process. After that, a suitable mathematical optimization formulation is built up. Receding Horizon Control (RHC) and Simulated Annealing (SA) algorithms are proposed to search the near-optimal solution for the large scale trajectories in routine dense operations. Taking Beijing Capital International Airport (BCIA) as a study case, the experimental results show that our system shows good performances on the management of arrivals and departures. It can automatically solve all the potential conflicts in presence of dense traffic flows. With its unique ML-PM route network, it can realize a shorter flying time and a near-Continuous Descent Approach (CDA) descent for arrival aircraft, an economical climbing for departure aircraft, an easier runway allocation together with trajectory control solutions. It shows a good and dynamic sequencing efficiency in Terminal Manoeuvring Area (TMA). In mixed ML-PM mode, under tested conditions, our proposed system can increase throughput at BCIA around 26%, compared with baseline. The methodology defined here could be easily applied to airports worldwide. 相似文献
13.
This paper presents two stochastic programming models for the allocation of time slots over a network of airports. The proposed models address three key issues. First, they provide an optimization tool to allocate time slots, which takes several operational aspects and airline preferences into account; second, they execute the process on a network of airports; and third they explicitly include uncertainty. To the best of our knowledge, these are the first models for time slot allocation to consider both the stochastic nature of capacity reductions and the problem’s network structure. From a practical viewpoint, the proposed models provide important insights for the allocation of time slots. Specifically, they highlight the tradeoff between the schedule/request discrepancies, i.e., the time difference between allocated time slots and airline requests, and operational delays. Increasing schedule/request discrepancies enables a reduction in operational delays. Moreover, the models are computationally viable. A set of realistic test instances that consider the scheduling of four calendar days on different European airport networks has been solved within reasonable – for the application’s context – computation times. In one of our test instances, we were able to reduce the sum of schedule/request discrepancies and operational delays by up to 58%. This work provides slot coordinators with a valuable decision making tool, and it indicates that the proposed approach is very promising and may lead to relevant monetary savings for airlines and aircraft operators. 相似文献
15.
Multi-Airport Systems (MAS), or Metroplexes, serve air traffic demand in cities with two or more airports. Due to the spatial proximity and operational interdependency of the airports, Metroplex airspaces are characterized by high complexity, and current system structures fail to provide satisfactory utilization of the available airspace resources. In order to support system-level design and management towards increased operational efficiency in such systems, an accurate depiction of major demand patterns is a prerequisite. This paper proposes a framework for the robust identification of significant air traffic flow patterns in Metroplex systems, which is aligned with the dynamic route service policy for the effective management of Metroplex operations. We first characterize deterministic demand through a spatio-temporal clustering algorithm that takes into account changes in the traffic flows over the planning horizon. Then, in order to handle uncertainties in the demand, a Distributionally Robust Optimization (DRO) approach is proposed, which takes into account demand variations and prediction errors in a robust way to ensure the reliability of the demand identification. The DRO-based approach is applied on pre-tactical (i.e. one-day planning) as well as operational levels (i.e. 2-h rolling horizon). The framework is applied to Time Based Flow Management (TBFM) data from the New York Metroplex. The framework and results are validated by Subject Matter Experts (SMEs). 相似文献
16.
This article describes a methodology for selecting days that are comparable in terms of the conditions faced during air traffic flow management initiative planning. This methodology includes the use of specific data sources, specific features of calendar days defined using these data sources, and the application of a specific form of classification and then cluster analysis. The application of this methodology will produce results that enable historical analysis of the use of initiatives and evaluation of the relative success of different courses of action. Several challenges are overcome here including the need to identify the appropriate machine learning algorithms to apply, to quantify the differences between calendar days, to select features describing days, to obtain appropriate raw data, and to evaluate results in a meaningful way. These challenges are overcome via a review of relevant literature, the identification and trial of several useful models and data sets, and careful application of methods. For example, the cluster analysis that ultimately selects sets of similar days uses a distance metric based on variable importance measures from a separate classification model of observed initiatives. The methodology defined here is applied to the New York area, although it could be applied by other researchers to other areas. 相似文献
17.
Pedestrians as compared to vehicular traffic enjoy a high degree freedom of movement even in heavily congested areas. Consequently, there are more alternative links available to pedestrians between a given origin‐destination (O‐D) pair. This paper describes a study done by the University of Calgary to evaluate the factors affecting the choice of route on intra‐CBD trips or trips within the Central Business District (CBD). An origin destination survey conducted in downtown Calgary, Alberta enabled the identification of the most significant factors influencing the choice. These factors were analyzed in relation to the physical characteristics of the location, personal characteristics of the trip maker and the type of the trip. It appears that most people chose the shortest link and factors such as the level of congestion, safety or visual attractions were only secondary. This suggests that the length should be made a major consideration when planning and designing pedestrian links. 相似文献
18.
Hanif D. Sherali Justin M. Hill 《Transportation Research Part C: Emerging Technologies》2009,17(6):631-641
In this paper, we consider a particular class of network flow problems that seeks a shortest path, if it exists, between a source node s and a destination node d in a connected digraph, such that we arrive at node d at a specified time τ while leaving node s no earlier than a lower-bounding time LB, and where the availability of each network link is time-dependent in the sense that it can be traversed only during specified intervals of time. We refer to this problem as the reverse time-restricted shortest path problem (RTSP), and it arises, for example, in the context of generating flight plans within air traffic management approaches under severe convective weather conditions. We show that this problem is NP-hard in general, but is polynomially solvable under a special regularity condition. A pseudo-polynomial time dynamic programming algorithm is developed to solve Problem RTSP, along with an effective heap implementation strategy. Computational results using real flight generation test cases as well as random simulated problems are presented. 相似文献
19.
In this paper, we consider a coordinated multi-aircraft 4D (3D space plus time) trajectories planning problem which is illustrated by planning 4D trajectories for aircraft traversing an Air Traffic Control (ATC) sector. The planned 4D trajectories need to specify each aircraft’s position at any time, ensuring conflict-free and reducing fuel and delay costs, with possible aircraft maneuvers such as speed adjustment and flight level change. Different from most existing literature, the impact of buffer safety distance is also under consideration, and conflict-free is guaranteed at any given time (not only at discrete time instances). The problem is formulated as a pure-strategy game with aircraft as players and all possible 4D trajectories as strategies. An efficient maximum improvement distributed algorithm is developed to find equilibrium at which every aircraft cannot unilaterally improve further, without enumerating all possible 4D trajectories in advance. Proof of existence of the equilibrium and convergence of the algorithm are given. A case study based on real air traffic data shows that the algorithm is able to solve 4D trajectories for online application with estimated 16.7% reduction in monetary costs, and allocate abundant buffer safety distance at minimum separation point. Scalability of the algorithm is verified by computational experiments. 相似文献
20.
For tools that generate more efficient flight routes or reroute advisories, it is important to ensure compatibility of automation and autonomy decisions with human objectives so as to ensure acceptability by the human operators. In this paper, the authors developed a proof of concept predictor of operational acceptability for route changes during a flight. Such a capability could have applications in automation tools that identify more efficient routes around airspace impacted by weather or congestion and that better meet airline preferences. The predictor is based on applying data mining techniques, including logistic regression, a decision tree, a support vector machine, a random forest and Adaptive Boost, to historical flight plan amendment data reported during operations and field experiments. Cross validation was used for model development, while nested cross validation was used to validate the models. The model found to have the best performance in predicting air traffic controller acceptance or rejection of a route change, using the available data from Fort Worth Air Traffic Control Center and its adjacent Centers, was the random forest, with an F-score of 0.77. This result indicates that the operational acceptance of reroute requests does indeed have some level of predictability, and that, with suitable data, models can be trained to predict the operational acceptability of reroute requests. Such models may ultimately be used to inform route selection by decision support tools, contributing to the development of increasingly autonomous systems that are capable of routing aircraft with less human input than is currently the case. 相似文献