首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
模型预测法是目前常用的隧道围岩变形预测的方法之一。文章结合广梧高速公路茶林顶隧道工程实例,建立GM(1,1)灰色模型、GM(2,1)灰色模型和双曲函数回归模型分别对隧道围岩变形进行预测,并对各模型的预测情况进行对比分析。结果表明,不论是从短期还是从长期看,GM(1,1)灰色模型都体现了优越的模拟和预测效果,且建立预测模型时不需要大量的统计数据,可应用于工程实际。  相似文献   

2.
    
All developed economies mandate at least third party auto insurance resulting inW a vast global liability industry. The evolution towards semi-autonomous and eventually driverless vehicles will progressively remove the leading cause of vehicle accidents, human error, and significantly lower vehicle accident rates. However, this transition will force a departure from existing actuarial methods requires careful management to ensure risks are correctly assigned. Personal motor insurance lines are anticipated to diminish as liability shifts towards OEMs, tier 1 and 2 suppliers and software developers. Vehicle accident risks will hinge on vehicular characteristics in addition to driver related risks as drivers alternate between autonomous and manual driving modes. This paper proposes a Bayesian Network statistical risk estimation approach that can accommodate changing risk levels and the emergence of new risk structures. We demonstrate the use of this method for a Level 3 semi-autonomous vehicle for two scenarios, one where the driver is in control and one where the vehicle is in control. This approach is especially suited to use telematics data generated from the vehicle inherent technologies. We validate the efficacy of this approach from the perspective of the insurer and discuss how vehicle technology development will require a greater degree of collaboration between the insurance company and the manufacturers in order to develop a greater understanding of the risks semi-autonomous and fully autonomous vehicles.  相似文献   

3.
    
We present a statistical process control framework to support structural health monitoring of transportation infrastructure. We contribute an integrated, generally-applicable (to various types of structural response data) statistical approach that links the literatures on statistical performance modeling and on structural health monitoring. The framework consists of two parts: The first, estimation of statistical models to explain, predict, and control for common-cause variation in the data, i.e., changes, including serial dependence, that can be attributed to usual operating conditions. The ensuing standardized innovation series are analyzed in the second part of the framework, which consists of using Shewhart and Memory Control Charts to detect special-cause or unusual events.We apply the framework to analyze strain and displacement data from the monitoring system on the Hurley Bridge (Wisconsin Structure B-26-7). Data were collected from April 1, 2010 to June 29, 2011. Our analysis reveals that, after controlling for seasonal effects, linear trends are significant components of the response measurements. Persistent displacement may be an indication of deterioration of the bridge supports. Trends in the strain data may indicate changes in the material properties, i.e., fatigue, sensor calibration, or traffic loading. The results also show that autocorrelation and conditional heteroscedasticity are significant sources of common-cause variation. Use of the control charts detected 43 possible special-cause events, with approximately 50% displaying persisting effects, and 25% lasting longer than one week. Analysis of traffic data shows that unusually heavy loading is a possible cause of the longest special-cause event, which lasted 11 days.  相似文献   

4.
Poor driving habits such as not using turn signals when changing lanes present a major challenge to advanced driver assistance systems that rely on turn signals. To address this problem, we propose a novel algorithm combining the hidden Markov model (HMM) and Bayesian filtering (BF) techniques to recognize a driver’s lane changing intention. In the HMM component, the grammar definition is inspired by speech recognition models, and the output is a preliminary behavior classification. As for the BF component, the final behavior classification is produced based on the current and preceding outputs of the HMMs. A naturalistic data set is used to train and validate the proposed algorithm. The results reveal that the proposed HMM–BF framework can achieve a recognition accuracy of 93.5% and 90.3% for right and left lane changing, respectively, which is a significant improvement compared with the HMM-only algorithm. The recognition time results show that the proposed algorithm can recognize a behavior correctly at an early stage.  相似文献   

5.
    
People’s daily decision to use car-sharing rather than other transport modes for conducting a specific activity has been investigated recently in assessing the market potential of car-sharing systems. Most studies have estimated transport mode choice models with an extended choice set using attributes such as average travel time and costs. However, car-sharing systems have some distinctive features: users have to reserve a car in advance and pay time-based costs for using the car. Therefore, the effects of activity-travel context and travel time uncertainty require further consideration in models that predict car-sharing demand. Moreover, the relationships between individual latent attitudes and the intention to use car-sharing have not yet been investigated in much detail. In contributing to the research on car-sharing, the present study is designed to examine the effects of activity-travel context and individual latent attitudes on short-term car-sharing decisions under travel time uncertainty. The effects of all these factors were simultaneously estimated using a hybrid choice modeling framework. The data used in this study was collected in the Netherlands, 2015 using a stated choice experiment. Hypothetical choice situations were designed to collect respondents’ intention to use a shared-car for their travel to work. A total of 791 respondents completed the experiment. The estimation results suggest that time constraints, lack of spontaneity and a larger variation in travel times have significant negative effects on people’s intention to use a shared-car. Furthermore, this intention is significantly associated with latent attitudes about pro-environmental preferences, the symbolic value of cars, and privacy-seeking.  相似文献   

6.
Energy costs account for an important share of the total costs of urban and suburban bus operators. The purpose of this paper is to expand empirical research on bus transit operation costs and identify the key factors that influence bus energy efficiency of the overall bus fleet of one operator and aid to the management of its resources.We estimate a set of multivariate regression models, using cross-section dataset of 488 bus drivers operating over 92 days in 2010, in 87 routes with different bus typologies, of a transit company operating in the Lisbon’s Metropolitan Area (LMA), Rodoviária de Lisboa, S.A.Our results confirm the existence of influential variables regarding energy efficiency and these are mainly: vehicle type, commercial speed, road grades over 5% and bus routes; and to a lesser extent driving events such as: sudden longitudinal decelerations and excessive engine rotation. The methodology proved to be useful for the bus operator as a decision-support tool for efficiency optimization purpose at the company level.  相似文献   

7.
    
Obtaining attribute values of non‐chosen alternatives in a revealed preference context is challenging because non‐chosen alternative attributes are unobserved by choosers, chooser perceptions of attribute values may not reflect reality, existing methods for imputing these values suffer from shortcomings, and obtaining non‐chosen attribute values is resource intensive. This paper presents a unique Bayesian (multiple) Imputation Multinomial Logit model that imputes unobserved travel times and distances of non‐chosen travel modes based on random draws from the conditional posterior distribution of missing values. The calibrated Bayesian (multiple) Imputation Multinomial Logit model imputes non‐chosen time and distance values that convincingly replicate observed choice behavior. Although network skims were used for calibration, more realistic data such as supplemental geographically referenced surveys or stated preference data may be preferred. The model is ideally suited for imputing variation in intrazonal non‐chosen mode attributes and for assessing the marginal impacts of travel policies, programs, or prices within traffic analysis zones. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
A cross-median crash (CMC) is one of the most severe types of crashes in which a vehicle crosses the median and sometimes collides with opposing traffic. A study of severity of CMCs in the state of Wisconsin was conducted by Lu et al. in 2010. Discrete choice models, namely ordinal logit and probit models were used to analyze factors related to the severity of CMCs. Separate models were developed for single and multi-vehicle CMCs. Although 25 different crash, roadway, and geometric variables were used, only 3 variables were found to be statistically significant which were alcohol usage, posted speed, and road conditions. The objective of this research was to explore the feasibility of GUIDE Classification Tree method to analyze the severity of CMCs to discover if any additional information could be revealed.A dataset of CMCs in the state of Wisconsin between 2001 and 2007, used in the study by Lu et al. was used to develop three different GUIDE Classification Trees. Additionally, the effects of variable types (continuous or discrete), misclassification costs, and tree pruning characteristics on models results were also explored. The results were directly compared with discrete choice models developed in the study by Lu et al. showing that the GUIDE Classification Trees revealed new variables (median width and traffic volume) that affect CMC severity and provided useful insight on the data. The results of this research suggest that the use of Classification Tree analysis should at least be considered in conjunction with regression-based crash models to better understand factors affecting crashes. Classification Tree models were able to reveal additional information about the dependent variable and offer advantages with respect to multicollinearity and variable redundancy issues.  相似文献   

9.
    
Discrete choice modeling is experiencing a reemergence of research interest in the inclusion of latent variables as explanatory variables of consumer behavior. There are several reasons that motivate the integration of latent attributes, including better-informed modeling of random consumer heterogeneity and treatment of endogeneity. However, current work still is at an early stage and multiple simplifying assumptions are usually imposed. For instance, most previous applications assume all of the following: independence of taste shocks and of latent attributes, exclusion restrictions, linearity of the effect of the latent attributes on the utility function, continuous manifest variables, and an a priori bound for the number of latent constructs. We derive and apply a structural choice model with a multinomial probit kernel and discrete effect indicators to analyze continuous latent segments of travel behavior, including inference on the energy paradox. Our estimator allows for interaction and simultaneity among the latent attributes, residual correlation, nonlinear effects on the utility function, flexible substitution patterns, and temporal correlation within responses of the same individual. Statistical properties of the Bayes estimator that we propose are exact and are not affected by the number of latent attributes.  相似文献   

10.
This paper presents a new class of models for predicting air traffic delays. The proposed models consider both temporal and spatial (that is, network) delay states as explanatory variables, and use Random Forest algorithms to predict departure delays 2–24 h in the future. In addition to local delay variables that describe the arrival or departure delay states of the most influential airports and links (origin–destination pairs) in the network, new network delay variables that characterize the global delay state of the entire National Airspace System at the time of prediction are proposed. The paper analyzes the performance of the proposed prediction models in both classifying delays as above or below a certain threshold, as well as predicting delay values. The models are trained and validated on operational data from 2007 and 2008, and are evaluated using the 100 most-delayed links in the system. The results show that for a 2-h forecast horizon, the average test error over these 100 links is 19% when classifying delays as above or below 60 min. Similarly, the average over these 100 links of the median test error is found to be 21 min when predicting departure delays for a 2-h forecast horizon. The effects of changes in the classification threshold and forecast horizon on prediction performance are studied.  相似文献   

11.
Weaving segments are potential recurrent bottlenecks which affect the efficiency and safety of expressways during peak hours. Meanwhile, they are one of the most complicated segments, since on- and off-ramp traffic merges, diverges and weaves in the limited space. One effective way to improve the safety of weaving segments is to study crash likelihood using real-time crash data with the objective of, identifying hazardous conditions and reducing the risk of crashes by Intelligent Transportation Systems (ITS) traffic control. This study presents a multilevel Bayesian logistic regression model for crashes at expressway weaving segments using crash, geometric, Microwave Vehicle Detection System (MVDS) and weather data. The results show that the mainline speed at the beginning of the weaving segments, the speed difference between the beginning and the end of weaving segment, logarithm of volume have significant impacts on the crash risk of the following 5–10 min for weaving segments. The configuration is also an important factor. Weaving segment, in which there is no need for on- or off-ramp traffic to change lane, is with high crash risk because it has more traffic interactions and higher speed differences between weaving and non-weaving traffic. Meanwhile, maximum length, which measures the distance at which weaving turbulence no longer has impact, is found to be positively related to the crash risk at the 95% confidence interval. In addition to traffic and geometric factors, wet pavement surface condition significantly increases the crash ratio by 77%. The proposed model along with ITS, e.g., ramp metering, Dynamic Message Sign (DMS), and high friction surface treatment can be used to enhance the safety of weaving segments in real-time.  相似文献   

12.
13.
  总被引:1,自引:0,他引:1  
An enhanced Delay Propagation Tree model with Bayesian Network (DPT-BN) is developed to model multi-flight delay propagation and delay interdependencies. Using a set of real airline data, results show that flights have non-homogeneous delay propagation effects. The DPT-BN model is used to infer posterior delay profiles with different delay and scheduling scenarios. The major contribution of the DPT-BN model is to demonstrate how the modelling of non-independent and identically distributed delay profiles is more realistic for the observed delay propagation mechanism, and how robust airline scheduling methodologies can benefit from this probability-based delay model.  相似文献   

14.
15.
城市的交通状态是可以预测的。有效的交通状态预测能优化交通状态,减少交通阻塞。贝叶斯网络(Bayesian Networks,BN)是目前不确定知识和推理领域最有效的理论模型之一。文章在综合考虑交通阻塞成因的基础上构建网络模型,在已有的交通状态数据的基础上提出基于贝叶斯法则的学习算法,并通过计算变量间的条件概率来计算交通阻塞发生的可能性,达到预测的目的。  相似文献   

16.
在激烈的竞争中,物流企业服务的质量及客户的满意度高低是至关重要的因素.文章以真实的企业数据为依据,提出了一种基于多元回归分析的多指标评价方法,并从客观性、实用性、推广性出发,介绍了该方法的具体应用,对物流企业提高客户满意度、改进服务具有较强的指导性与普及性作用.  相似文献   

17.
The need for acquiring the current-year traffic data is a problem for transport planners since such data may not be available for on-going transport studies. A method is proposed in this paper to predict hourly traffic flows up to and into the near future, using historical data collected from the Hong Kong Annual Traffic Census (ATC). Two parametric and two non-parametric models have been employed and evaluated in this study. The results show that the non-parametric models (Non-Parametric Regression (NPR) and Gaussian Maximum Likelihood (GML)) were more promising for predicting hourly traffic flows at the selected ATC station. Further analysis encompassing 87 ATC stations revealed that the NPR is likely to react to unexpected changes more effectively than the GML method, while the GML model performs better under steady traffic flows. Taking into consideration the dynamic nature of the common traffic patterns in Hong Kong and the advantages/disadvantages of the various models, the NPR model is recommended for predicting the hourly traffic flows in that region.  相似文献   

18.
Supply chain risk measurement is an expanding research stream that considers the ability of networked firms to anticipate and respond to significant environmental risks, including major disruptions and unexpected events. However measuring and quantifying supply chain risk has proved an enormous challenge and this research contributes to this goal by developing a risk assessment scorecard, using conjoint analysis, for motor carrier firms. The resultant motor-carrier scorecard has been scaled from 300 to 900, to resemble the well-known FICO score for assessing consumer creditworthiness. Our scoring model enables motor carriers – and the firms that depend upon them in intermodal supply chains – to assess carriers’ ability to withstand major disruptive events, which are broadly defined as events which might lead to a significant drop in carriers’ income and profitability (e.g., such as that which occurred on September 11, 2001). Carriers with weaker risk scores (<600, on a 300–900 scale) are more likely to experience financial distress (and as a result possibly exit the industry itself); those with scores above 600 are less likely to depart. The model correctly identified 77 percent of motor carriers that ultimately exited the trucking industry following the significant environmental disruption caused by 9/11. Our computational experience indicates that the model accuracy, quantified in terms of Type I and Type II errors, compares favorably to prior results reported in the credit scoring literature.  相似文献   

19.
In spite of their widespread use in policy design and evaluation, relatively little evidence has been reported on how well traffic equilibrium models predict real network impacts. Here we present what we believe to be the first paper that together analyses the explicit impacts on observed route choice of an actual network intervention and compares this with the before-and-after predictions of a network equilibrium model. The analysis is based on the findings of an empirical study of the travel time and route choice impacts of a road capacity reduction. Time-stamped, partial licence plates were recorded across a series of locations, over a period of days both with and without the capacity reduction, and the data were ‘matched’ between locations using special-purpose statistical methods. Hypothesis tests were used to identify statistically significant changes in travel times and route choice, between the periods of days with and without the capacity reduction. A traffic network equilibrium model was then independently applied to the same scenarios, and its predictions compared with the empirical findings. From a comparison of route choice patterns, a particularly influential spatial effect was revealed of the parameter specifying the relative values of distance and travel time assumed in the generalised cost equations. When this parameter was ‘fitted’ to the data without the capacity reduction, the network model broadly predicted the route choice impacts of the capacity reduction, but with other values it was seen to perform poorly. The paper concludes by discussing the wider practical and research implications of the study’s findings.  相似文献   

20.
文章以长春市的城市规划、不同道路特征、不同路段的交通流特性等因素为依据,选取具有代表性典型路段,即主干线306路为调查样本进行取样试验;依据严寒及寒冷地区分类的国家标准,确定冬季试验时间为2013年1月;通过公共汽车的行驶条件确定试验方法为平均车流法;所用试验车辆为中国第一汽车集团公司所产的解放牌CA6120URH2型公共汽车。试验将采集到的数据根据不同行驶状态划分为若干行程片段,并分别计算出每个片段的对应特征值,进而对所有数据片段进行了主成分分析和聚类分析,在相关性及有效性验证之后通过数据拟合构建成主干路典型行驶工况。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号