首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Introducing real time traffic information into transportation network makes it necessary to consider development of queues and traffic flows as a dynamic process. This paper initiates a theoretical study of conditions under which this process is stable. A model is presented that describes within-one-day development of queues when drivers affected by real-time traffic information choose their paths en route. The model is reduced to a system of differential equations with delay. Equilibrium points of the system correspond to constant queue lengths. Stability of the system is investigated using characteristic values of the linearised minimal face flow. A traffic network example illustrating the method is provided.  相似文献   

2.
This paper investigates a strategic signal control, which anticipates travelers' route choice response and determines signal timings to optimize network‐wide objectives. In general traffic assignment models are used for anticipating this route choice response. However, model‐reality mismatch usually brings suboptimal solutions to the real system. A repeated anticipatory control resolves the suboptimality and addresses the modeling error by learning from information on model bias. This paper extends the repeated control approach and focuses on the estimation of flow sensitivity as well as its influence on control, which is a crucial issue in implementation of model bias correction. The main objective of this paper is first to analyze the estimation error in the real flow derivative that is estimated from noisy measurements. A dual control method is then presented, improving both optimization objective function and derivative estimation during the control process. The proposed dual algorithm is tested on a simple network as well as on a midsize network. Numerical examples confirm the reliable performance of the new reality‐tracking control strategy and its ability to identify (local) optimal solutions on real traffic networks. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
Recent studies have demonstrated that Macroscopic Fundamental Diagram (MFD), which provides an aggregated model of urban traffic dynamics linking network production and density, offers a new generation of real-time traffic management strategies to improve the network performance. However, the effect of route choice behavior on MFD modeling in case of heterogeneous urban networks is still unexplored. The paper advances in this direction by firstly extending two MFD-based traffic models with different granularity of vehicle accumulation state and route choice behavior aggregation. This configuration enables us to address limited traffic state observability and to scrutinize implications of drivers’ route choice in MFD modeling. We consider a city that is partitioned in a small number of large-size regions (aggregated model) where each region consists of medium-size sub-regions (more detailed model) exhibiting a well-defined MFD. This paper proposes a route guidance advisory control system based on the aggregated model as a large-scale traffic management strategy that utilizes aggregated traffic states while sub-regional information is partially known. In addition, we investigate the effect of equilibrium conditions (i.e. user equilibrium and system optimum) on the overall network performance, in particular MFD functions.  相似文献   

4.
Most deterministic day-to-day traffic evolution models, either in continuous-time or discrete-time space, have been formulated based on a fundamental assumption on driver route choice rationality where a driver seeks to maximize her/his marginal benefit defined as the difference between the perceived route costs. The notion of rationality entails the exploration of the marginal decision rule from economic theory, which states that a rational individual evaluates his/her marginal utility, defined as the difference between the marginal benefit and the marginal cost, of each incremental decision. Seeking to analyze the marginal decision rule in the modeling of deterministic day-to-day traffic evolution, this paper proposes a modeling framework which introduces a term to capture the marginal cost to the driver induced by route switching. The proposed framework enables to capture both benefit and cost associated with route changes. The marginal cost is then formulated upon the assumption that drivers are able to predict other drivers’ responses to the current traffic conditions, which is adopted based on the notion of strategic thinking of rational players developed in behavior game theory. The marginal cost based on 1-step strategic thinking also describes the “shadow price” of shifting routes, which helps to explain the behavioral tendency of the driver perceiving the cost-sensitivity to link/route flows. After developing a formulation of the marginal utility day-to-day model, its theoretical properties are analyzed, including the invariance property, asymptotic stability, and relationship with the rational behavioral adjustment process.  相似文献   

5.
The paper investigates the efficiency of a recently developed signal control methodology, which offers a computationally feasible technique for real-time network-wide signal control in large-scale urban traffic networks and is applicable also under congested traffic conditions. In this methodology, the traffic flow process is modeled by use of the store-and-forward modeling paradigm, and the problem of network-wide signal control (including all constraints) is formulated as a quadratic-programming problem that aims at minimizing and balancing the link queues so as to minimize the risk of queue spillback. For the application of the proposed methodology in real time, the corresponding optimization algorithm is embedded in a rolling-horizon (model-predictive) control scheme. The control strategy’s efficiency and real-time feasibility is demonstrated and compared with the Linear-Quadratic approach taken by the signal control strategy TUC (Traffic-responsive Urban Control) as well as with optimized fixed-control settings via their simulation-based application to the road network of the city centre of Chania, Greece, under a number of different demand scenarios. The comparative evaluation is based on various criteria and tools including the recently proposed fundamental diagram for urban network traffic.  相似文献   

6.
In view of the serious traffic congestion during peak hours in most metropolitan areas around the world and recent improvement of information technology, there is a growing aspiration to alleviate road congestion by applications of electronic information and communication technology. Providing drivers with dynamic travel time information such as estimated journey times on major routes should help drivers to select better routes and guide them to utilise existing expressway network. This can be regarded as one possible strategy for effective traffic management. This paper aims to investigate the effects and benefits of providing dynamic travel time information to drivers via variable message signs at the expressway network. In order to assess the effects of the dynamic driver information system with making use of the variable message signs, a time-dependent traffic assignment model is proposed. A numerical example is used to illustrate the effects of the dynamic travel time information via variable message signs. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
This paper investigates the reliability of information on prevailing trip times on the links of a network as a basis for route choice decisions by individual drivers. It considers a type of information strategy in which no attempt is made by some central controller or coordinating entity to predict what the travel times on each link would be by the time it is reached by a driver that is presently at a given location. A specially modified model combining traffic simulation and path assignment capabilities is used to analyze the reliability of the real-time information supplied to the drivers. This is accomplished by comparing the supplied travel times (at the link and path levels) to the actual trip times experienced in the network after the information has been given. In addition, the quality of the decisions made by drivers on the basis of this information (under alternative path switching rules) is evaluated ex-post by comparing the actually experienced travel time (given the decision made) to the time that the driver would have experienced without the real-time information. Results of a series of simulation experiments under recurrent congestion conditions are discussed, illustrating the interactions between information reliability and user response.  相似文献   

8.
Today, driver support tools intended to increase traffic safety, provide the driver with convenient information and guidance, or save time are becoming more common. However, few systems have the primary aim of reducing the environmental effects of driving. The aim of this project was to estimate the potential for reducing fuel consumption and thus the emission of CO2 through a navigation system where optimization of route choice is based on the lowest total fuel consumption (instead of the traditional shortest time or distance), further the supplementary effect if such navigation support could take into account real-time information about traffic disturbance events from probe vehicles running in the street network. The analysis was based on a large database of real traffic driving patterns connected to the street network in the city of Lund, Sweden. Based on 15 437 cases, the fuel consumption factor for 22 street classes, at peak and off-peak hours, was estimated for three types of cars using two mechanistic emission models. Each segment in the street network was, on a digitized map, attributed an average fuel consumption for peak and off-peak hours based on its street class and traffic flow conditions. To evaluate the potential of a fuel-saving navigation system the routes of 109 real journeys longer than 5 min were extracted from the database. Using Esri’s external program ArcGIS, Arcview and the external module Network Analysis, the most fuel-economic route was extracted and compared with the original route, as well as routes extracted from criterions concerning shortest time and shortest distance. The potential for further benefit when the system employed real-time data concerning the traffic situation through 120 virtual probe vehicles running in the street network was also examined. It was found that for 46% of trips in Lund the drivers spontaneous choice of route was not the most fuel-efficient. These trips could save, on average, 8.2% fuel by using a fuel-optimized navigation system. This corresponds to a 4% fuel reduction for all journeys in Lund. Concerning the potential for real-time information from probe vehicles, it was found that the frequency of disturbed segments in Lund was very low, and thus so was the potential fuel-saving. However, a methodology is presented that structures the steps required in analyzing such a system. It is concluded that real-time traffic information has the potential for fuel-saving in more congested areas if a sufficiently large proportion of the disturbance events can be identified and reported in real-time.  相似文献   

9.
To estimate travel times through road networks, in this study, we assume a stochastic demand and formulate a stochastic network equilibrium model whose travel times, flows, and demands are stochastic. This model enables us to examine network reliability under stochastic circumstances and to evaluate the effect of providing traffic information on travel times. For traffic information, we focus on travel time information and propose methods to evaluate the effect of providing that information. To examine the feasibility and validity of the proposed model and methods, we apply them to a simple network and the real road network of Kanazawa, Japan. The results indicate that providing ambulance drivers in Kanazawa with travel time information leads to an average reduction in travel time of approximately three minutes.  相似文献   

10.
Accurate short-term traffic flow forecasting has become a crucial step in the overall goal of better road network management. Previous research [H. Kirby, M. Dougherty, S. Watson, Should we use neural networks or statistical models for short term motorway traffic forecasting, International Journal of Forecasting 13 (1997) 43–50.] has demonstrated that a straightforward application of neural networks can be used to forecast traffic flows along a motorway link. The objective of this paper is to report on the application and performance of an alternative neural computing algorithm which involves ‘sequential or dynamic learning’ of the traffic flow process. Our initial work [H. Chen, S. Clark, M.S. Dougherty, S.M. Grant-Muller, Investigation of network performance prediction, Report on Dynamic Neural Network and Performance Indicator development, Institute for Transport Studies, University of Leeds Technical Note 418, 1998 (unpublished)] was based on simulated data (generated using a Hermite polynomial with random noise) that had a profile similar to that of traffic flows in real data. This indicated the potential suitability of dynamic neural networks with traffic flow data. Using the Kalman filter type network an initial application with M25 motorway flow data suggested that a percentage absolute error (PAE) of approximately 9.5% could be achieved for a network with five hidden units (compared with 11% for the static neural network model). Three different neural networks were trained with all the data (containing an unknown number of incidents) and secondly using data wholly obtained around incidents. Results showed that from the three different models, the ‘simple dynamic model’ with the first five units fixed (and subsequent hidden units distributed amongst these) had the best forecasting performance. Comparisons were also made of the networks’ performance on data obtained around incidents. More detailed analysis of how the performance of the three networks changed through a single day (including an incident) showed that the simple dynamic model again outperformed the other two networks in all time periods. The use of ‘piecewise’ models (i.e. where a different model is selected according to traffic flow conditions) for data obtained around incidents highlighted good performance again by the simple dynamic network. This outperformed the standard Kalman filter neural network for a medium-sized network and is our overall recommendation for any future application.  相似文献   

11.
Advanced Traveler Information Systems (ATIS) provide travelers with real time traffic information to optimize their travel choices. The objective of this paper is to model drivers' diversion from their normal routes in the provision of ATIS. Five different scenarios of traffic information are used. Generalized Estimating Equations (GEE) framework with repeated observations and binomial probit link function is introduced and implemented. GEE with four different correlation structures including the independent case are developed and compared with each other and with regular Maximum Likelihood Estimation (MLE). A travel simulator was used. Sixty-five subjects have traveled 10 simulated trial days each on a 40-link realistic network with real historical congestion levels. The results showed that providing traffic information increases the probability of drivers' diversion from their normal routes. Adding advice to the pre-trip and/or en-route information encourages drivers to divert. Providing en-route in addition to the pre-trip information with or without advice increases the diversion probability. High travel time on the normal route and less travel time on the diverted route increase the probability of diversion. High-educated drivers are less likely to divert. Expressway users are more likely to divert from their normal routes under ATIS. Drivers' familiarity with the device that provides the information and high number of traffic signals on the normal route increase the diversion probability.  相似文献   

12.
In real traffic networks, travellers’ route choice is affected by traffic control strategies. In this research, we capture the interaction between travellers’ route choice and traffic signal control in a coherent framework. For travellers’ route choice, a VANET (Vehicular Ad hoc NETwork) is considered, where travellers have access to the real-time traffic information through V2V/V2I (Vehicle to Vehicle/Vehicle to Infrastructure) infrastructures and make route choice decisions at each intersection using hyper-path trees. We test our algorithm and control strategy by simulation in OmNet++ (A network communication simulator) and SUMO (Simulation of Urban MObility) under several scenarios. The simulation results show that with the proposed dynamic routing, the overall travel cost significantly decreases. It is also shown that the proposed adaptive signal control reduces the average delay effectively, as well as reduces the fluctuation of the average speed within the whole network.  相似文献   

13.
We consider a specific advanced traveler information systems (ATIS) whose objective is to reduce drivers’ travel time uncertainty with recurrent network congestion through provision of traffic information. Since the provided information is still partial or imperfect, drivers equipped with an ATIS cannot always find the shortest travel time route and thus may not always comply with the advice provided by ATIS. Thus, there are three classes of drivers on a specific day: drivers without ATIS, drivers with ATIS but without compliance with ATIS advice, drivers with ATIS and in compliance with ATIS advice. All three classes of drivers make route choice in a stochastic manner, but with different degree of uncertainty of travel time on the network. In this paper we investigate the interactions among the three classes of drivers in an ATIS environment using a multiple behavior stochastic user equilibrium model. By assuming that the market penetration of ATIS is an increasing function of the actual private gain (time saving minus the cost associated with system use) derived from ATIS service, and the ATIS compliance rate of equipped drivers is given as the probability of the actual travel time of complied drivers being less than that of non-complied drivers, we determine the equilibrium market penetration and compliance rate of ATIS and the resulting equilibrium network flow pattern using an iterative solution procedure.  相似文献   

14.
Neural networks offer a potential alternative method of modelling driver behaviour within road traffic systems. This paper explores the application of neural networks to modelling the lane-changing decisions of drivers on dual carriageways. Two approaches are considered. The first, preliminary approach uses a prediction type of neural network with a single hidden layer and the back propagation learning algorithm to model the behaviour of an individual driver. A series of consecutive time-scan traffic patterns, which describe the driver's environment and changes over time as the selected vehicle travels along a link, are input to the neural network, which then predicts the new lane and position of the vehicle. Training data are collected from a human subject using an interactive driving simulation. The trained neural network successfully exhibited the rudiments of driving behaviour in terms of lane and speed changes. A major disadvantage of this approach was the difficulty in recording real-life data, which are required to train the neural network, for individual drivers. The second approach concentrates specifically on lane changing and makes use of a learning vector quantization classification type of neural network. Input to the neural network still consists primarily of time-scan traffic patterns, but the format is changed to facilitate the possibility of data acquisition using image processing. The neural network output classifies the input data by determining the new lane for the vehicle concerned. Performance in both testing and training was very good for data generated by the rule-based driver-decision model of a microscopic simulation. Performance in testing was less satisfactory for data taken directly from a road and highlighted the need for extensive data sets for successful training.  相似文献   

15.
This paper proposes a behavior-based consistency-seeking (BBCS) model as an alternative to the dynamic traffic assignment paradigm for the real-time control of traffic systems under information provision. The BBCS framework uses a hybrid probabilistic–possibilistic model to capture the day-to-day evolution and the within-day dynamics of individual driver behavior. It considers heterogeneous driver classes based on the broad behavioral characteristics of drivers elicited from surveys and past studies on driver behavior. Fuzzy logic and if–then rules are used to model the various driver behavior classes. The approach enables the modeling of information characteristics and driver response to be more consistent with the real-world. The day-to-day evolution of driver behavior characteristics is reflected by updating the appropriate model parameters based on the current day’s experience. The within-day behavioral dynamics are reactive and capture drivers’ actions vis-à-vis the ambient driving conditions by updating the weights associated with the relevant if–then rules. The BBCS model is deployed by updating the ambient driver behavior class fractions so as to ensure consistency with the real-time traffic sensor measurements. Simulation experiments are conducted to investigate the real-time applicability of the proposed framework to a real-world network. The results suggest that the approach can reasonably capture the within-day variations in driver behavior model parameters and class fractions in the traffic stream. Also, they indicate that deployment-capable information strategies can be used to influence system performance. From a computational standpoint, the approach is real-time deployable.  相似文献   

16.
Accurate and reliable forecasting of traffic variables is one of the primary functions of Intelligent Transportation Systems. Reliable systems that are able to forecast traffic conditions accurately, multiple time steps into the future, are required for advanced traveller information systems. However, traffic forecasting is a difficult task because of the nonlinear and nonstationary properties of traffic series. Traditional linear models are incapable of modelling such properties, and typically perform poorly, particularly when conditions differ from the norm. Machine learning approaches such as artificial neural networks, nonparametric regression and kernel methods (KMs) have often been shown to outperform linear models in the literature. A bottleneck of the latter approach is that the information pertaining to all previous traffic states must be contained within the kernel, but the computational complexity of KMs usually scales cubically with the number of data points in the kernel. In this paper, a novel kernel-based machine learning (ML) algorithm is developed, namely the local online kernel ridge regression (LOKRR) model. Exploiting the observation that traffic data exhibits strong cyclic patterns characterised by rush hour traffic, LOKRR makes use of local kernels with varying parameters that are defined around each time point. This approach has 3 advantages over the standard single kernel approach: (1) It allows parameters to vary by time of day, capturing the time varying distribution of traffic data; (2) It allows smaller kernels to be defined that contain only the relevant traffic patterns, and; (3) It is online, allowing new traffic data to be incorporated as it arrives. The model is applied to the forecasting of travel times on London’s road network, and is found to outperform three benchmark models in forecasting up to 1 h ahead.  相似文献   

17.
Variable message signs (VMS) can provide up‐to‐date traffic information and guidance to drivers through electronic signs at the roadside. The paper draws together the results from VMS field trials conducted in nine cities as part of European Union‐sponsored research projects carried out between 1994 and 1999. The projects followed common guidelines in carrying out field trial evaluations, which has enabled generalized findings to be made on the impacts of the different VMS applications. The main emphasis in the paper is on drivers' reactions to VMS and the impacts of VMS on road network efficiency. Results are reported for four different types of traffic information. For incident messages, it is not only the severity of the problem reported that influences the level of diversions, but also other factors such as the specific location mentioned and the availability of viable alternative routes to avoid the problem location. For route guidance information, it is demonstrated that substantial diversions occur when the route advice differs from that given normally. For continuous information describing the traffic state on a major route, information increases the use of the major route and reduces use of alternative routes if there are no traffic problems reported on the major route. Travel time information was well regarded by drivers and found to be effective in inducing route changes. In general, the deployments of VMS to inform drivers of traffic conditions have proved successful in terms of improving network travel times and reducing environmental impacts. Whilst such changes have been relatively small, driver perception of the benefits is much higher. This is potentially very significant in terms of the role that VMS can play in the development of integrated transport strategies, as the provision of information may encourage greater acceptance of a range of demand management measures.  相似文献   

18.
Driving behavior models that capture drivers’ tactical maneuvering decisions in different traffic conditions are essential to microscopic traffic simulation systems. This paper focuses on a parameter that has a great impact on road users’ aggressive overtaking maneuvers and directly affects lane-changing models (an integral part of microscopic traffic simulation models), namely, speed deviation. The objective of this research is to investigate the impacts of speed deviation in terms of performance measures (delay time, network mean speed, and travel time duration) and the number of lane-change maneuvers using the Aimsun traffic simulator. Following calibration of the model for a section of urban highway in Tehran, this paper explores the sensitivity of lane-changing maneuvers during different speed deviations by conducting two types of test. Simulation results show that, by decreasing speed deviation, the number of lane changes reduces remarkably and so network safety increases, thus reducing travel time due to an increase in network mean speed.  相似文献   

19.
The evacuation operations problem aims to avoid or mitigate the potential loss of life in a region threatened or affected by a disaster. It is shaped to a large extent by the evolution of evacuation traffic resulting from the demand–supply interactions of the associated transportation network. Information-based control is a strategic tool for evacuation traffic operations as it can enable greater access to the affected population and more effective response. However, comparatively few studies have focused on the implementation of information-based control in evacuation operations. This study develops a control module for evacuation operations centered on addressing the demand–supply interactions by using behavior-consistent information strategies. These strategies incorporate the likely responses of evacuees to the information provided in the determination of route guidance information. The control module works as an iterative computational process involving an evacuee route choice model and a control model of information strategies to determine the route guidance information to direct evacuation traffic so as to approach a desired network traffic flow pattern. The problem is formulated as a fuzzy logic based optimization framework to explicitly incorporate practical concerns related to information dissemination characteristics and social equity in evacuation operations. Numerical experiments highlight the importance of accounting for the demand–supply interactions, as the use of behavior-consistent information strategies can lead evacuee route choices to approach the operator-desired proportions corresponding to the desired traffic pattern. The results also indicate that while a behavior-consistent information strategy can be effective, gaps with the desired route proportions can exist due to the discrete nature of the linguistic messages and the real-world difficulty in accurately modeling evacuees’ actual route choice behavior.  相似文献   

20.
The main goal of in-vehicle technologies and co-operative services is to reduce congestion and increase traffic safety. This is achieved by alerting drivers on risky traffic conditions ahead of them and by exchanging traffic and safety related information for the particular road segment with nearby vehicles. Road capacity, level of service, safety, and air pollution are impacted to a large extent by car-following behavior of drivers. Car-following behavior is an essential component of micro-simulation models. This paper investigates the impact of an infrastructure-to-vehicle (I2V) co-operative system on drivers’ car-following behavior. Test drivers in this experiment drove an instrumented vehicle with and without the system. Collected trajectory data of the subject vehicle and the vehicle in front, as well as socio-demographic characteristics of the test drivers were used to estimate car-following models capturing their driving behavior with and without the I2V system. The results show that the co-operative system harmonized the behavior of drivers and reduced the range of acceleration and deceleration differences among them. The observed impact of the system was largest on the older group of drivers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号