共查询到20条相似文献,搜索用时 0 毫秒
1.
This study explores the possibility of employing social media data to infer the longitudinal travel behavior. The geo-tagged social media data show some unique features including location-aggregated features, distance-separated features, and Gaussian distributed features. Compared to conventional household travel survey, social media data is less expensive, easier to obtain and the most importantly can monitor the individual’s longitudinal travel behavior features over a much longer observation period. This paper proposes a sequential model-based clustering method to group the high-resolution Twitter locations and extract the Twitter displacements. Further, this study details the unique features of displacements extracted from Twitter including the demographics of Twitter user, as well as the advantages and limitations. The results are even compared with those from traditional household travel survey, showing promises in using displacement distribution, length, duration and start time to infer individual’s travel behavior. On this basis, one can also see the potential of employing social media to infer longitudinal travel behavior, as well as a large quantity of short-distance Twitter displacements. The results will supplement the traditional travel survey and support travel behavior modeling in a metropolitan area. 相似文献
2.
A number of studies in the last decade have argued that Global Positioning Systems (GPS) based survey offer the potential to replace traditional travel diary surveys. GPS-based surveys impose lower respondent burden, offer greater spatiotemporal precision and incur fewer monetary costs. However, GPS-based surveys do not collect certain key inputs required for the estimation of travel demand models, such as the travel mode(s) taken or the trip purpose, relying instead on data-processing procedures to infer this information. This study assesses the impact that errors in inference can have on travel demand models estimated using data from GPS-based surveys and proposes ways in which these errors can be controlled for during both data collection and model estimation. We use simulated datasets to compare performance across different sample sizes, inference accuracies, model complexities and estimation methods. Findings from the simulated datasets are corroborated with real data collected from individuals living in the San Francisco Bay Area, United States. Results indicate that the benefits of using GPS-based surveys will vary significantly, depending upon the sample size of the data, the accuracy of the inference algorithm and the desired complexity of the travel demand model specification. In many cases, gains in the volume of data that can potentially be retrieved using GPS devices are found to be offset by the loss in quality caused by inaccuracies in inference. This study makes the argument that passively collected GPS-based surveys may never entirely replace surveys that require active interaction with study participants. 相似文献
3.
The share of immobile persons, i.e. persons not leaving their homes on a given reporting day, is both a central result and
a prime quality indicator of a travel diary survey. The wide range of values for the share of immobiles reported in travel
diary and time budget survey literature has motivated this in-depth analysis of the reasons for these disparities. This paper
collates available evidence on the share of immobiles in travel diary surveys. The share of these non-travellers (UK), or
no-trippers (US), varies greatly between otherwise similar surveys. After analysing both disaggregate and aggregate information,
this paper concludes that the share of immobiles should be in the range of 8%–12% for the standard one-day, weekday-only travel
diary. The analysis suggests that a substantial share of respondents refuse to participate in a soft way, i.e. by claiming
not to have left the house. In its conclusions, the paper sketches new ways to reduce the share of such soft refusers during
the interview and to identify them during the analysis.
相似文献
4.
An in-depth understanding of travel behaviour determinants, including the relationship to non-travel activities, is the foundation for modelling and policy making. National Travel Surveys (NTS) and time use surveys (TUS) are two major data sources for travel behaviour and activity participation. The aim of this paper is to systematically compare both survey types regarding travel activities and non-travel activities. The analyses are based on the German National Travel Survey and the German National Time Use Survey from 2002.The number of trips and daily travel time for mobile respondents were computed as the main travel estimates. The number of trips per person is higher in the German TUS when changes in location without a trip are included. Location changes without a trip are consecutive non-trip activities with different locations but without a trip in-between. The daily travel time is consistently higher in the German TUS. The main reason for this difference is the 10-min interval used. Differences in travel estimates between the German TUS and NTS result from several interaction effects. Activity time in NTS is comparable with TUS for subsistence activities.Our analyses confirm that both survey types have advantages and disadvantages. TUS provide reliable travel estimates. The number of trips even seems preferable to NTS if missed trips are properly identified and considered. Daily travel times are somewhat exaggerated due to the 10-min interval. The fixed time interval is the most important limitation of TUS data. The result is that trip times in TUS do not represent actual trip times very well and should be treated with caution.We can use NTS activity data for subsistence activities between the first trip and the last trip. This can potentially benefit activity-based approaches since most activities before the first trip and after the last trip are typical home-based activities which are rarely substituted by out-of-home activities. 相似文献
5.
Frank Primerano Michael A. P. Taylor Ladda Pitaksringkarn Peter Tisato 《Transportation》2008,35(1):55-72
Trip chaining is a phenomenon that we know exists but rarely investigate. This could be attributed to either the difficulty in defining trip chains, extracting such information from travel diary surveys, the difficulty in analysing all the possible trip chain types, or all of the above. Household travel diary surveys provide a wealth of information on the travel patterns of individuals and households. Since such surveys collect all information related to travel undertaken, in theory it should be possible to extract trip-chaining characteristics of travel from them. Due to the difficulty in establishing and analysing all of the possible trip chain types, the majority of research on trip chaining has appeared to focus on work travel only. However, work related travel in many cities does not represent the majority of activities undertaken and, for some age groups, does not represent any travel at all. This paper begins by reviewing existing research in the field of trip chaining. In particular, investigations into the definitions of trip chaining, the defined typologies of trip chains and the research questions that have been addressed are explored. This review of previous research into trip chaining facilitates the following tasks: the identification of the most useful questions to be addressed by this research; defining trip chaining and associated typologies and defining data structures to extract trip chaining information from the household travel surveys conducted in metropolitan Adelaide, South Australia. The definition and typology developed in our research was then used to extract trip-chaining information from the household travel diary survey (MAHTS99) conducted in Adelaide in 1999. The extracted trip chaining information was then used to investigate trip-chaining behaviour by households. The paper reports the results of this analysis and concludes with a summary of the findings and recommendations for further investigations. 相似文献
6.
7.
8.
Joyce M. Dargay Stephen Clark 《Transportation Research Part A: Policy and Practice》2012,46(3):576-587
This study analyses of the determinants of long distance travel in Great Britain using data from the 1995-2006 National Travel Surveys (NTSs). The main objective is to determine the effects of socio-economic, demographic and geographic factors on long distance travel. The estimated models express the distance travelled for long distance journeys as a function of income, gender, age, employment status, household characteristics, area of residence, size of municipality, type of residence and length of time living in the area. A time trend is also included to capture common changes in long distance travel over time not included in the explanatory variables. Separate models are estimated for total travel, travel by each of four modes (car, rail, coach and air), travel by five purposes (business, commuting, leisure, holiday and visiting friends and relatives (VFRs)) and two journey lengths (<150 miles and 150+ miles one way), as well as the 35 mode-purpose-distance combinations.The results show that long distance travel is strongly related to income: air is most income-elastic, followed by rail, car and finally coach. This is the case for most journey purposes and distance bands. Notable is the substantial difference in income elasticities for rail for business/commuting as opposed to holiday/leisure/VFR. In addition, the income elasticity for coach travel is very low, and zero for the majority of purpose-distance bands, suggesting coach travel to be an inferior mode in comparison to car, rail and air. Regarding journey distance, we find that longer distance journeys are more income elastic than shorter journeys.For total long distance travel, the study indicates that women travel less than men, the elderly less than younger people, the employed and students more than others, those in one adult households more than those in larger households and those in households with children less than those without. Long distance travel is also lowest for individuals living in London and greatest for those in the South West, and increases as the size of the municipality declines. 相似文献
9.
10.
This paper has two objectives: to examine the volatility of travel behaviour over time and consider the factors explaining this volatility; and to estimate the factors determining car ownership and commuting by car. The analysis is based on observations of individuals and households over a period of up to 11 years obtained from the British Household Panel Survey (BHPS). Changes in car ownership, commuting mode and commuting time over a period of years for the same individuals/households are examined to determine the extent to which these change from year-to-year. This volatility of individual behaviour is a measure of the ease of change or adaptation. If behaviour changes easily, policy measures are likely to have a stronger and more rapid effect than if there is more resistance to change. The changes are “explained” in terms of factors such as moving house, changing job and employment status. The factors determining car ownership and commuting by car are analysed using a dynamic panel-data models. 相似文献
11.
This paper describes a comprehensive panel data collection and analysis at household level, including detailed travel behaviour variables and comprehensive in-home and out-of-home activities, individual cognitive habits and affective behaviours, the rate of physical activity, as well as health related quality of life (QoL) information in the Bandung Metropolitan Area (BMA) of Indonesia. To our knowledge, this is the first attempt to collect an individual’s activity diary over an extended period as it captures the multi-tasking activities and multidisciplinary factors that underlie individual activity-travel patterns in a developing country. Preliminary analyses of the collected data indicate that different beliefs, anticipated emotions, support and attachment to motorised modes significantly correlate with different groups of occupation, gender, age, activity participation, multi-tasking activities, and physical health, but not with different social and mental health. This finding highlights the reason why implementing car reduction policies in Indonesia, without breaking or changing the individual’s habits and influencing his/her attitudes have not been fruitful. The results also show that endorsing more physical activities may result in a significant reduction in the individual’s motorised mode use, whilst individuals who demonstrate a tendency to use their spare time on social activities tend to have better social health conditions. Furthermore, undertaking multi-tasking out-of-home discretionary activities positively correlates with better physical health. All these highlight the importance of properly understanding and analysing the complex mechanisms that underlie these fundamental factors that shape individual daily activity-travel patterns in developing countries. This type of multidisciplinary approach is needed to design better transport policies that will not only promote better transport conditions, but also a healthier society with a better quality of life. 相似文献
12.
This paper explores the potential role of individual trip characteristics and social capital network variables in the choice of transport mode. A sample of around 100 individuals living or working in one suburb of Madrid (i.e. Las Rosas district of Madrid) participated in a smartphone short panel survey, entering travel data for an entire working week. A Mixed Logit model was estimated with this data to analyze shifts to metro as a consequence of the opening of two new stations in the area. Apart from classical explanatory variables, such as travel time and cost, gender, license and car ownership, the model incorporated two “social capital network” variables: participation in voluntary activities and receiving help for various tasks (i.e. child care, housekeeping, etc.). Both variables improved the capacity of the model to explain transport mode shifts. Further, our results confirm that the shift towards metro was higher in the case of people “helped” and lower for those participating in some voluntary activities. 相似文献
13.
Automated Vehicles (AVs) offer their users a possibility to perform new non-driving activities while being on the way. The effects of this opportunity on travel choices and travel demand have mostly been conceptualised and modelled via a reduced penalty associated with (in-vehicle) travel time. This approach invariably leads to a prediction of more car-travel. However, we argue that reductions in the size of the travel time penalty are only a crude proxy for the variety of changes in time-use and travel patterns that are likely to occur at the advent of AVs. For example, performing activities in an AV can save time and in this way enable the execution of other activities within a day. Activities in an AV may also eliminate or generate a need for some other activities and travel. This may lead to an increase, or decrease in travel time, depending on the traveller’s preferences, schedule, and local accessibility. Neglecting these dynamics is likely to bias forecasts of travel demand and travel behaviour in the AV-era. In this paper, we present an optimisation model which rigorously captures the time-use effects of travellers’ ability to perform on-board activities. Using a series of worked out examples, we test the face validity of the model and demonstrate how it can be used to predict travel choices in the AV-era. 相似文献
14.
New mobility data sources like mobile phone traces have been shown to reveal individuals’ movements in space and time. However, socioeconomic attributes of travellers are missing in those data. Consequently, it is not possible to partition the population and have an in-depth understanding of the socio-demographic factors influencing travel behaviour. Aiming at filling this gap, we use mobile internet usage behaviour, including one’s preferred type of website and application (app) visited through mobile internet as well as the level of usage frequency, as a distinguishing element between different population segments. We compare the travel behaviour of each segment in terms of the preference for types of trip destinations. The point of interest (POI) data are used to cluster grid cells of a city according to the main function of a grid cell, serving as a reference to determine the type of trip destination. The method is tested for the city of Shanghai, China, by using a special mobile phone dataset that includes not only the spatial-temporal traces but also the mobile internet usage behaviour of the same users. We identify statistically significant relationships between a traveller’s favourite category of mobile internet content and more frequent types of trip destinations that he/she visits. For example, compared to others, people whose favourite type of app/website is in the “tourism” category significantly preferred to visit touristy areas. Moreover, users with different levels of internet usage intensity show different preferences for types of destinations as well. We found that people who used mobile internet more intensively were more likely to visit more commercial areas, and people who used it less preferred to have activities in predominantly residential areas. 相似文献
15.
The objective of this paper is to analyse the factors determining household car travel, and specifically the effects of household income and the prices of cars and motor fuels, and to explore the intertemporal pattern of adjustment. The question of asymmetry in the response to rising and falling income is also addressed. Such asymmetry may be caused by habit or resistance to change or the tendency to acquire habits to consume more easily than to abandon them. The impact of prices, the speed of adjustment and the resistance to change will be important in determining the possibility of influencing travel behaviour and specifically car use. The study utilises repeated cross-section data from the annual UK Family Expenditure Surveys and employs a pseudo-panel methodology. The results are compared with those for car ownership estimated on the basis of similar models. 相似文献
16.
When a new public transport service is introduced it would be valuable for public authorities, financing organisations and
transport operators to know how long it will take for people to start to use the service and what factors influence this.
This paper presents results from research analysing the time taken for residents living close to a new guided bus service
to start to use (or adopt) the service. Data was obtained from a sample of residents on whether they used the new service
and the number of weeks after the service was introduced before they first used it. Duration modelling has been used to analyse
how the likelihood of starting to use the new service changes over time (after the introduction of the service) and to examine
what factors influence this. It is found that residents who have not used the new service are increasingly unlikely to use
it as time passes. Those residents gaining greater accessibility benefits from the new service are found to be quicker to
use the service, although the size of this effect is modest compared to that of other between-resident differences. Allowance
for the possibility that there existed a proportion of the sample that would never use the new service was tested using a
split population model (SPD) model. The SPD model indicates that 36% of residents will never use the new service and is informative
in differentiating factors that influence whether Route 20 is used and when it is used.
Kiron Chatterjee has been a Senior Lecturer at the University of the West of England, Bristol, since 2003 and previously was at the University of Southampton. Currently, a main focus of his research is on longitudinal analysis of travel behaviour to improve policy analysis. Kang-Rae Ma received a PhD in Planning from University College London. He worked at the University of the West of England, Bristol, and the Korea Transport Institute before he joined Chung-Ang University as an Assistant Professor. His research interests include modelling of travel behaviour and urban excess commuting. 相似文献
Kang-Rae MaEmail: |
Kiron Chatterjee has been a Senior Lecturer at the University of the West of England, Bristol, since 2003 and previously was at the University of Southampton. Currently, a main focus of his research is on longitudinal analysis of travel behaviour to improve policy analysis. Kang-Rae Ma received a PhD in Planning from University College London. He worked at the University of the West of England, Bristol, and the Korea Transport Institute before he joined Chung-Ang University as an Assistant Professor. His research interests include modelling of travel behaviour and urban excess commuting. 相似文献
17.
Khandker M. Nurul Habib Catherine Morency 《Transportation Research Part A: Policy and Practice》2012,46(1):154-166
Traditionally, the parking choice/option is considered to be an important factor in only in the mode choice component of a four-stage travel demand modelling system. However, travel demand modelling has been undergoing a paradigm shift from the traditional trip-based approach to an activity-based approach. The activity-based approach is intended to capture the influences of different policy variables at various stages of activity-travel decision making processes. Parking is a key policy variable that captures land use and transportation interactions in urban areas. It is important that the influences of parking choice on activity scheduling behaviour be identified fully. This paper investigates this issue using a sample data set collected in Montreal, Canada. Parking type choice and activity scheduling decision (start time choice) are modelled jointly in order to identify the effects of parking type choice on activity scheduling behaviour. Empirical investigation gives strong evidence that parking type choice influences activity scheduling process. The empirical findings of this investigation challenge the validity of the traditional conception which considers parking choice as exogenous variable only in the mode choice component of travel demand models. 相似文献
18.
This contribution presents theoretical considerations concerning the connections between life situation, lifestyle, choice
of residential location and travel behaviour, as well as empirical results of structural equation models. The analyses are
based on data resulting from a survey in seven study areas in the region of Cologne. The results indicate that lifestyles
influence mode choice, although slightly, even when life situation is controlled for. The influence of life situation on mode
choice exceeds the influence of lifestyle. The influence that lifestyle, and in part also life situation, has on mode choice
is primarily mediated by specific location attitudes and location decisions that influence mode choice, respectively. Here
objective spatial conditions as well as subjective location attitudes are important.
相似文献
Joachim ScheinerEmail: |
19.
Recent years saw a continuing shift in labour force composition, e.g. greater participation of women and a prominent rise in part-time workers. There are as yet relatively few recent studies that examine systematically the influences on the travel of employed adults from such perspectives, particularly regarding possible transport disadvantages of the fastest growing segments of workers. A robust analysis requires systematic data on a wide range of explanatory variables and multiple travel outcomes including accessibility, mobility and trip frequency for different trip purposes. The UK NTS data does meet the majority of this demanding data requirement, but its full use has so far been hampered by methodological difficulties. To overcome complex endogeneity problems, we develop novel, integrated structural equation models (SEMs) to uncover the influences of latent land use characteristics, indirect influences on car ownership, interactions among trip purposes as well as residents’ self-selection and spatial sorting. This general-purpose method provides a new, systematic decomposition of the influences on travel outcomes, where the effects of each variable can be examined in turn with robust error terms. The new insights underline two direct policy implications. First, it highlights the contributions of land use planning and urban design in restraining travel demand in the 2000s, and their increasing influence over the decade. Secondly, it shows that there may still be a large mobility disadvantage among the fastest growing segments of workers, particularly in dense urban areas. This research further investigates trend breaking influences before and after 2007 through grouped SEM models, as a test of the methodology for producing regular and timely updates regarding the main influences on personal travel from a system level. 相似文献
20.
Ramp meters in the Twin Cities have been the subject of a recent test of their effectiveness, involving turning them off for eight weeks. This paper analyzes the results with and without ramp metering for several representative freeways during the afternoon peak period. Seven performance measures: mobility, equity, productivity, consumers’ surplus, accessibility, travel time variation and travel demand responses are compared. It is found that ramp meters are particularly helpful for long trips relative to short trips. Ramp metering, while generally beneficial to freeway segments, may not improve trip travel times (including ramp delays). The reduction in travel time variation comprises another benefit from ramp meters. Non-work trips and work trips respond differently to ramp meters. The results are mixed, suggesting a more refined ramp control algorithm, which explicitly considers ramp delay, is in order. 相似文献