首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
This paper presents a research on traffic modelling developed for assessing traffic and energy performance of electric systems installed along roads for dynamic charging-while-driving (CWD) of fully electric vehicles (FEVs).The logic adopted by the developed traffic model is derived from a particular simulation scenario of electric charging: a freight distribution service operated using medium-sized vans. In this case, the CWD service is used to recover the state of charge of the FEV batteries to shortly start with further activities after arrival at the depot.The CWD system is assumed to be implemented in a multilane ring road with several intermediate on-ramp entrances, where the slowest lane is reserved for the dynamic charging of authorized electric vehicles. A specific traffic model is developed and implemented based on a mesoscopic approach, where energy requirements and charging opportunities affect driving and traffic behaviours. Overtaking manoeuvres as well as new entries in the CWD lane of vehicles that need to charge are modelled according to a cooperative driving system, which manages adequate time gaps between consecutive vehicles. Finally, a speed control strategy is simulated at a defined node to create an empty time-space slot in the CWD lane, by delaying the arriving vehicles. This simulated control, implemented to allow maintenance operations for CWD that may require clearing a charging zone for a short time slot, could also be applied to facilitate on-ramp merging manoeuvres.  相似文献   

2.
    
This paper proposes three enhanced semi-supervised clustering algorithms, namely the Constrained-K-Means (CKM), the Seeded-K-Means (SKM), and the Semi-Supervised Fuzzy c-Means (SFCM), to identify probe vehicle trajectories in the mixed traffic corridor. The proposed algorithms are able to take advantage of the strengthens of topological relation judgment and the semi-supervised learning technique by optimizing the selection of pre-labeling samples and initial clustering centers of the original semi-supervised learning technique based on horizontal Global Positioning System data. The proposed algorithms were validated and evaluated based on the probe vehicle data collected at two mixed corridors on Shanghai’s urban expressways. Results indicate that the enhanced SFCM algorithm could achieve the best performance in terms of clustering purity and Normalized Mutual Information, followed by the CKM algorithm and the SKM algorithm. It may reach a nearly 100% clustering purity for the uncongested conditions and a clustering purity greater than 80% for the congested conditions. Meanwhile, it could improve clustering purity averagely by 21% and 14% for the congested conditions and 6.5% and 6% for the uncongested conditions, as compared with the traditional K-Means algorithm and the basic SFCM. The proposed algorithms can be applied for both on-line and off-line purposes, without the need of historical data. Clustering accuracies under different traffic conditions and possible improvements with the use of historical data are also discussed.  相似文献   

3.
    
As mobile traffic sensor technology gets more attention, mathematical models are being developed that utilize this new data type in various intelligent transportation systems applications. This study introduces simple analytical estimation models for queue lengths from tracked or probe vehicles at traffic signals using stochastic modeling approach. Developed models estimate cycle-to-cycle queue lengths by using primary parameters such as arrival rate, probe vehicle proportions, and signal phase durations. Valuable probability distributions and moment generating functions for probe information types are formulated. Fully analytical closed-form expressions are given for the case ignoring the overflow queue and approximation models are presented for the overflow case. Derived models are compared with the results from VISSIM-microscopic simulation. Analytical steady-state and cycle-to-cycle estimation errors are also derived. Numerical examples are shown for the errors of these estimators that change with probe vehicle market penetration levels, arrival rates, and volume-to-capacity ratios.  相似文献   

4.
    
Well-defined relationships between flow and density averaged spatially across urban traffic networks, more commonly known as Macroscopic Fundamental Diagrams (MFDs), have been recently verified to exist in reality. Researchers have proposed using MFDs to monitor the status of urban traffic networks and to inform the design of network-wide traffic control strategies. However, it is also well known that empirical MFDs are not easy to estimate in practice due to difficulties in obtaining the requisite data needed to construct them. Recent works have devised ways to estimate a network’s MFD using limited trajectory data that can be obtained from GPS-equipped mobile probe vehicles. These methods assume that the market penetration level of mobile probe vehicles is uniform across the entire set of OD pairs in the network; however, in reality the probe vehicle market penetration rate varies regionally within a network. When this variation is combined with the imbalance of probe trip lengths and travel times, the compound effects will further complicate the estimation of the MFD.To overcome this deficit, we propose a method to estimate a network’s MFD using mobile probe data when the market penetration rates are not necessarily the same across an entire network. This method relies on the determination of appropriate average probe penetration rates, which are weighted harmonic means using individual probe vehicle travel times and distances as the weights. The accuracy of this method is tested using synthetic data generated in the INTEGRATION micro-simulation environment by comparing the estimated MFDs to the ground truth MFD obtained using a 100% market penetration of probe vehicles. The results show that the weighted harmonic mean probe penetration rates outperform simple (arithmetic) average probe penetration rates, as expected. This especially holds true as the imbalance of demand and penetration level increases. Furthermore, as the probe penetration rates are generally not known, an algorithm to estimate the probe penetration rates of regional OD pairs is proposed. This algorithm links count data from sporadic fixed detectors in the network to information from probe vehicles that pass the detectors. The simulation results indicate that the proposed algorithm is very effective. Since the data needed to apply this algorithm are readily available and easy to collect, the proposed algorithm is practically feasible and offers a better approach for the estimation of the MFD using mobile probe data, which are becoming increasingly available in urban environments.  相似文献   

5.
    
This article proposes an efficient multiple model particle filter (EMMPF) to solve the problems of traffic state estimation and incident detection, which requires significantly less computation time compared to existing multiple model nonlinear filters. To incorporate the on ramps and off ramps on the highway, junction solvers for a traffic flow model with incident dynamics are developed. The effectiveness of the proposed EMMPF is assessed using a benchmark hybrid state estimation problem, and using synthetic traffic data generated by a micro-simulation software. Then, the traffic estimation framework is implemented using field data collected on Interstate 880 in California. The results show the EMMPF is capable of estimating the traffic state and detecting incidents and requires an order of magnitude less computation time compared to existing algorithms, especially when the hybrid system has a large number of rare models.  相似文献   

6.
    
Travel time is an effective measure of roadway traffic conditions. The provision of accurate travel time information enables travelers to make smart decisions about departure time, route choice and congestion avoidance. Based on a vast amount of probe vehicle data, this study proposes a simple but efficient pattern-matching method for travel time forecasting. Unlike previous approaches that directly employ travel time as the input variable, the proposed approach resorts to matching large-scale spatiotemporal traffic patterns for multi-step travel time forecasting. Specifically, the Gray-Level Co-occurrence Matrix (GLCM) is first employed to extract spatiotemporal traffic features. The Normalized Squared Differences (NSD) between the GLCMs of current and historical datasets serve as a basis for distance measurements of similar traffic patterns. Then, a screening process with a time constraint window is implemented for the selection of the best-matched candidates. Finally, future travel times are forecasted as a negative exponential weighted combination of each candidate’s experienced travel time for a given departure. The proposed approach is tested on Ring 2, which is a 32km urban expressway in Beijing, China. The intermediate procedures of the methodology are visualized by providing an in-depth quantitative analysis on the speed pattern matching and examples of matched speed contour plots. The prediction results confirm the desirable performance of the proposed approach and its robustness and effectiveness in various traffic conditions.  相似文献   

7.
    
Traffic waves are phenomena that emerge when the vehicular density exceeds a critical threshold. Considering the presence of increasingly automated vehicles in the traffic stream, a number of research activities have focused on the influence of automated vehicles on the bulk traffic flow. In the present article, we demonstrate experimentally that intelligent control of an autonomous vehicle is able to dampen stop-and-go waves that can arise even in the absence of geometric or lane changing triggers. Precisely, our experiments on a circular track with more than 20 vehicles show that traffic waves emerge consistently, and that they can be dampened by controlling the velocity of a single vehicle in the flow. We compare metrics for velocity, braking events, and fuel economy across experiments. These experimental findings suggest a paradigm shift in traffic management: flow control will be possible via a few mobile actuators (less than 5%) long before a majority of vehicles have autonomous capabilities.  相似文献   

8.
Traffic crashes occurring on freeways/expressways are considered to relate closely to previous traffic conditions, which are time-varying. Meanwhile, most studies use volume/occupancy/speed parameters to predict the likelihood of crashes, which are invalid for roads where the traffic conditions are estimated using speed data extracted from sampled floating cars or smart phones. Therefore, a dynamic Bayesian network (DBN) model of time sequence traffic data has been proposed to investigate the relationship between crash occurrence and dynamic speed condition data. Moreover, the traffic conditions near the crash site were identified as several state combinations according to the level of congestion and included in the DBN model. Based on 551 crashes and corresponding speed information collected on expressways in Shanghai, China, DBN models were built with time series speed condition data and different state combinations. A comparative analysis of the DBN model using flow detector data and a static Bayesian network model was also conducted. The results show that, with only speed condition data and nine traffic state combinations, the DBN model can achieve a crash prediction accuracy of 76.4% with a false alarm rate of 23.7%. In addition, the results of transferability testing imply that the DBN models are applicable to other similar expressways with 67.0% crash prediction accuracy.  相似文献   

9.
    
Connected vehicle technology can be beneficial for traffic operations at intersections. The information provided by cars equipped with this technology can be used to design a more efficient signal control strategy. Moreover, it can be possible to control the trajectory of automated vehicles with a centralized controller. This paper builds on a previous signal control algorithm developed for connected vehicles in a simple, single intersection. It improves the previous work by (1) integrating three different stages of technology development; (2) developing a heuristics to switch the signal controls depending on the stage of technology; (3) increasing the computational efficiency with a branch and bound solution method; (4) incorporating trajectory design for automated vehicles; (5) using a Kalman filter to reduce the impact of measurement errors on the final solution. Three categories of vehicles are considered in this paper to represent different stages of this technology: conventional vehicles, connected but non-automated vehicles (connected vehicles), and automated vehicles. The proposed algorithm finds the optimal departure sequence to minimize the total delay based on position information. Within each departure sequence, the algorithm finds the optimal trajectory of automated vehicles that reduces total delay. The optimal departure sequence and trajectories are obtained by a branch and bound method, which shows the potential of generalizing this algorithm to a complex intersection.Simulations are conducted for different total flows, demand ratios and penetration rates of each technology stage (i.e. proportion of each category of vehicles). This algorithm is compared to an actuated signal control algorithm to evaluate its performance. The simulation results show an evident decrease in the total number of stops and delay when using the connected vehicle algorithm for the tested scenarios with information level of as low as 50%. Robustness of this algorithm to different input parameters and measurement noises are also evaluated. Results show that the algorithm is more sensitive to the arrival pattern in high flow scenarios. Results also show that the algorithm works well with the measurement noises. Finally, the results are used to develop a heuristic to switch between the different control algorithms, according to the total demand and penetration rate of each technology.  相似文献   

10.
    
The cooperative vehicle-infrastructure technologies have enabled vehicles to collect and exchange traffic information in real time. Therefore, it is possible to use Vehicular Ad-hoc NETworks (VANETs) for detecting traffic congestion on urban expressways. However, because of the special topology of urban expressways (consisting of both major and auxiliary roadways), the existing traffic congestion detection methods using VANETs do not work very well. In addition, the existing dissemination methods of congestion information lack the necessary control mechanism, so the information may be disseminated to irrelevant geographical areas. This paper proposes a congestion detection and notification scheme using VANETs for urban expressways. The scheme adopts a simplified Doppler frequency shift method to estimate and differentiate traffic conditions for major and auxiliary roadways. Vehicular cooperation and human cognition are introduced to improve the estimation accuracy and to describe the overall traffic conditions. Additionally, the scheme develops a spatial–temporal effectiveness model based on the potential energy theory to control the dissemination area and survival time of the congestion information. Meanwhile, the proposed scheme uses several broadcast control mechanisms to alleviate vehicular network congestion. Simulations through TransModeler indicate that our scheme ensures the accuracy of the estimation of congestion degree. Consequently, the scheme can provide effective references for driving decision-making and path-planning.  相似文献   

11.
The purpose of this paper is to examine the performance of a new operational system for measuring traffic speeds and travel times which is based on information from a cellular phone service provider. Cellular measurements are compared with those obtained by dual magnetic loop detectors. The comparison uses data for a busy 14 km freeway with 10 interchanges, in both directions, during January–March of 2005. The dataset contains 1 284 587 valid loop detector speed measurements and 440 331 valid measurements from the cellular system, each measurement referring to a 5 min interval. During one week in this period, 25 floating car measurements were conducted as additional comparison observations. The analyses include visual, graphical, and statistical techniques; focusing in particular on comparisons of speed patterns in the time–space domain. The main finding is that there is a good match between the two measurement methods, indicating that the cellular phone-based system can be useful for various practical applications such as advanced traveler information systems and evaluating system performance for modeling and planning.  相似文献   

12.
    
Emerging sensing technologies such as probe vehicles equipped with Global Positioning System (GPS) devices on board provide us real-time vehicle trajectories. They are helpful for the understanding of the cases that are significant but difficult to observe because of the infrequency, such as gridlock networks. On the premise of this type of emerging technology, this paper propose a sequential route choice model that describes route choice behavior, both in ordinary networks, where drivers acquire spatial knowledge of networks through their experiences, and in extraordinary networks, which are situations that drivers rarely experience, and applicable to real-time traffic simulations. In extraordinary networks, drivers do not have any experience or appropriate information. In such a context, drivers have little spatial knowledge of networks and choose routes based on dynamic decision making, which is sequential and somewhat forward-looking. In order to model these decision-making dynamics, we propose a discounted recursive logit model, which is a sequential route choice model with the discount factor of expected future utility. Through illustrative examples, we show that the discount factor reflects drivers’ decision-making dynamics, and myopic decisions can confound the network congestion level. We also estimate the parameters of the proposed model using a probe taxis’ trajectory data collected on March 4, 2011 and on March 11, 2011, when the Great East Japan Earthquake occurred in the Tokyo Metropolitan area. The results show that the discount factor has a lower value in gridlock networks than in ordinary networks.  相似文献   

13.
This paper examines the impact of traffic-flow on CO, NO2 and PM emissions at two distinct traffic junctions and evaluates the use of emission factors. The study includes three scenarios regarding pollutant emissions, which combine a field, experimental and semi-empirically estimated traffic parameters for free, interrupted and congested traffic-flow conditions. It evaluates the emission patterns for heterogeneity in traffic characteristics of both junctions. The results suggest the corrections to be made to emission factors at traffic junctions for better forecast of air quality.  相似文献   

14.
运营高速公路上边坡石方爆破是工程建设领域的一个难题,常规爆破必然危及高速公路自身结构安全和行车安全。文章介绍了石方普通爆破、孔外延时孔间微差定向松动爆破、劈裂机静态爆破三种不同的爆破方式,并针对运营高速公路实际,提出结合运用孔外延迟孔间微差定向松动爆破和劈裂机静态爆破两种爆破方法,能有效地对运营中的高速公路上边坡石方进行安全爆破。  相似文献   

15.
    
Probe vehicles provide some of the most useful data for road traffic monitoring because they can acquire wide-ranging and spatiotemporally detailed information at a relatively low cost compared with traditional fixed-point observation. However, current GPS-equipped probe vehicles cannot directly provide us volume-related variables such as flow and density. In this paper, we propose a new probe vehicle-based estimation method for obtaining volume-related variables by assuming that a probe vehicle can measure the spacing to its leading one. This assumption can be realized by utilizing key technologies in advanced driver assistance systems that are expected to spread in the near future. We developed a method of estimating the flow, density, and speed from the probe vehicle data without exogenous assumptions on traffic flow characteristics, such as a fundamental diagram. In order to quantify the characteristics of the method, we performed a field experiment at a real-world urban expressway by employing prototypes of the probe vehicles with spacing measurement equipment. The result showed that the proposed method could accurately estimate the 5 min and hourly traffic volumes with probe vehicle penetration rate of 3.5% and 0.2%, respectively.  相似文献   

16.
    
This paper presents a thorough microscopic simulation investigation of a recently proposed methodology for highway traffic estimation with mixed traffic, i.e., traffic comprising both connected and conventional vehicles, which employs only speed measurements stemming from connected vehicles and a limited number (sufficient to guarantee observability) of flow measurements from spot sensors. The estimation scheme is tested using the commercial traffic simulator Aimsun under various penetration rates of connected vehicles, employing a traffic scenario that features congested as well as free-flow conditions. The case of mixed traffic comprising conventional and connected vehicles equipped with adaptive cruise control, which feature a systematically different car-following behavior than regular vehicles, is also considered. In both cases, it is demonstrated that the estimation results are satisfactory, even for low penetration rates.  相似文献   

17.
  总被引:2,自引:0,他引:2  
This study attempts to develop a small, portable travel-activity measuring instrument that requires no entry from respondents. Conventional surveys have collected identification information such as facility type, transport mode, and activity content through the operation of instruments, questionnaires, etc. However, these complicated surveys burden the respondents and rely on their memory, often leading to recording omissions or incorrect records. We propose a method for estimating behavioral contexts using BCALs (Behavioral Context Addressable Loggers in the Shell), a wearable, behavioral context information-measuring instrument, for re-estimating label information such as facility type and transport mode from ecological and environmental sensors based on learning models. The numerical values observed by these sensors differed greatly among locations or means of transportation, revealing the high possibility of automatic identification of locations and means of transportation using BCALs.  相似文献   

18.
城市桥梁声屏障设计及交通噪声控制研究   总被引:1,自引:0,他引:1  
城市桥梁交通噪声污染随着城市道路的发展和车辆增多日益严重,引起了人们的普遍关注。文章以北大桥声屏障设计为研究对象,结合北大桥交通噪声污染调查分析,阐述了声屏障高度、声屏障结构形式等声屏障设计治理方案,并从规划阶段、运营阶段等方面探讨了城市桥梁交通噪声的控制对策。  相似文献   

19.
    
This paper proposes a method of estimating a traffic state based on probe vehicle data that contain spacing and position of probe vehicles. The probe vehicles were assumed to observe spacing by utilizing an advanced driver assistance system, that has been implemented in practice and is expected to spread in the near future. The proposed method relies on the conservation law of the traffic flow but is independent of a fundamental diagram. The conservation law is utilized for reasonable aggregation of the spacing data to acquire the traffic state, i.e., a flow, density and speed. Its independence from a fundamental diagram means that the proposed method does not require predetermined nor exogenous assumptions with regard to the traffic flow model parameters. The proposed method was validated through a simulation experiment under ideal conditions and a field experiment conducted under actual traffic conditions; and empirical characteristics of the proposed method were investigated.  相似文献   

20.
    
Current modal share in Indian cities is in favor of non-motorized transport (NMT) and public transport (PT), however historical trends shows decline in its use. Existing NMT and PT infrastructure in Indian cities is of poor quality resulting in increasing risk from road traffic crashes to these users. It is therefore likely that the current NMT and PT users will shift to personal motorized vehicles (PMV) as and when they can afford it. Share of NMT and PT users can be retained and possibly increased if safe and convenient facilities for them are created. This shall also have impact on reducing environment impacts of transport system.We have studied travel behavior of three medium size cities – Udaipur, Rajkot and Vishakhapatnam. Later the impact of improving built environment and infrastructure on travel mode shares, fuel consumption, emission levels and traffic safety in Rajkot and Vishakhapatnam are analyzed. For the purpose three scenarios are developed – improving only NMT infrastructure, improving only bus infrastructure and improving both NMT and bus infrastructure.The study shows the strong role of NMT infrastructure in both cities despite geographical dissimilarities. The scenario analysis shows maximum reduction in CO2 emissions is achieved when both PT and NMT infrastructure are improved. Improvement in safety indicator is highest in this scenario. Improving only PT infrastructure may have marginal effect on overall reduction of CO2 emissions and adverse effects on traffic safety. NMT infrastructure is crucial for maintaining the travel mode shares in favor of PT and NMT in future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号