首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The collection of origin–destination data for a city is an important but often costly task. This way, there is a need to develop more efficient and inexpensive methods of collecting information about citizens’ travel patterns. In this line, this paper presents a generic methodology that allows to infer the origin and destination zones for an observed trip between two public transport stops (i.e., bus stops or metro stations) using socio-economic, land use, and network information. The proposed zonal inference model follows a disaggregated Logit approach including size variables. The model enables the estimation of a zonal origin–destination matrix for a city, if trip information passively collected by a smart-card payment system is available (in form of a stop-to-stop matrix). The methodology is applied to the Santiago de Chile’s morning peak period, with the purpose of serving as input for a public transport planning computational tool. To estimate the model, information was gathered from different sources and processed into a unified framework; data included a survey conducted at public transport stops, land use information, and a stop-to-stop trip matrix. Additionally, a zonal system with 1176 zones was constructed for the city, including the definition of its access links and associated distances. Our results shows that, ceteris paribus, zones with high numbers of housing units have higher probabilities of being the origin of a morning peak trip. Likewise, health facilities, educational, residential, commercial, and offices centres have significant attraction powers during this period. In this sense, our model manages to capture the expected effects of land use on trip generation and attraction. This study has numerous policy implications, as the information obtained can be used to predict the impacts of changes in the public transport network (such as extending routes, relocating their stops, designing new routes or changing the fare structure). Further research is needed to improve the zonal inference formulation and origin–destination matrix estimation, mainly by including better cost measures, and dealing with survey and data limitations.  相似文献   

2.
This paper addresses the relationship between land use, destination selection, and travel mode choice. Specifically, it focuses on intrazonal trips, a sub-category of trip making where both trip origin and trip destination are contained in the same geographic unit of analysis, using data from the 1994 Household Activity and Travel Diary Survey conducted by Portland Metro. Using multinomial logit and binary logistic models to measure travel mode choice and decision to internalize trips, the evidence supports the conclusions that (1) intrazonal trips characteristics suggest mode choice for these trips might be influenced by urban form, which in turn affects regional trip distribution; (2) there is a threshold effect in the ability of economic diversity/mixed use to alter travel behavior; and (3) greater emphasis to destinations within the area where an individual’s home is located needs to be given in trip distribution models.  相似文献   

3.
The cost of nation wide travel surveys is high. Hence in many developing countries, planners have found it difficult to develop intercity transportation plans due to the non availability of origin‐destination trip matrices. This paper will describe a method for the intercity auto travel estimation for Sri Lanka with link traffic volume data.

The paper outlines the rationale of selecting the district capitals of Sri Lanka as its “cities,” the methodology for selecting the intercity road network, determination of link travel times from express bus schedules and the location of link volume counting positions.

Initially, the total auto travel demand model is formulated with various trip purpose sub‐models. This model is finally modified to a simple demand model with district urban population and travel times between city pairs as the exogenous variables, to overcome statistical estimation difficulties. The final demand model has statistics within the acceptable regions.

The advantages of a simple model are discussed and possible extensions are proposed.  相似文献   

4.
This paper develops a flexible gravity-opportunities model for trip distribution in which standard forms of the gravity and opportunities models are obtained as special cases of a general opportunities (GO) model. Hence the question of choice between gravity or opportunities approaches is decided empirically and statistically by restrictions on parameters which control the global functional form of the trip distribution mechanism. The test for the gravity model is shown to be equivalent to a test of the IIA axiom where alternatives are destinations.The notational dichotomy between the two approaches is resolved by employing ordered trip matrices and transformations to permit row and column sum constraints to be applied. These constraints, often interpreted in various ways, are treated as normalisation terms and are therefore not strictly part of the form of the model. Doubly constrained, singly constrained and unconstrained versions of both models are developed throughout.A key step in the integration is the specification of an opportunity function which has as arguments destination-attribute variables such population, income or some other measure of opportunities and generalized cost/impedance-type variables relating origin and destination. This device obviates the mutual exclusiveness ordinarily required of these two sets of variables.The opportunity function is incorporated into a general proportionality factor which is defined by the difference in functions of cumulative opportunities; the latter are subjected to a convex combination of direct and inverse Box-Cox transformations. Different values of the parameters controlling these transformations generate contrasting families of models, notably the exponential and logarithmic intervening opportunities models and the gravity model. All models are shown to be embedded in a transformed triangular region over which likelihood function, response surface or simultaneous confidence interval contours may be plotted.These generalised gravity-opportunity concepts are applied to two well-known models: direct demand multimodal travel demand models, and the estimation of the OD matrix from link volumes. The second case is estimated empirically and here it is shown that a significant improvement is obtained over the gravity model, which is rejected, along with the logarithmic intervening opportunity model, in favour of a more general direct opportunities version.  相似文献   

5.
Research on walking behavior has become increasingly more important in the field of transportation in the past decades. However, the study of the factors influencing the scheduling decisions related to walking trips and the exploration of the differences between travel modes has not been conducted yet. This paper presents a comparison of the scheduling and rescheduling decisions associated with car driving trips and walking trips by habitual car users using a data set collected in Valencia (Spain) in 2010. Bivariate probit models with sample selection are used to accommodate the influence of pre-planning on the decision to execute a travel as pre-planned or not. The explicative variables considered are: socio-economic characteristics of respondents, travel characteristics, and facets of the activity executed at origin and at destination including the scheduling decisions associated with them. The results demonstrate that a significant correlation exists between the choices of pre-planning and rescheduling for both types of trips. Whether for car driving or walking trips, the scheduling decisions associated with the activity at origin and at destination are the most important explicative factors of the trip scheduling and rescheduling decisions. However, the rescheduling of trips is mainly influenced by modifications in the activity at destination. Some interesting differences arise regarding the rescheduling decision processes between travel modes: if pre-planned, walking trips are less likely to be modified than car driving trips, showing a more rigid rescheduling behavior.  相似文献   

6.
In this paper, the concept of reserve capacity has been extended to zone level to measure the land-use development potentiality of each trip generation zone. Bi-level programing models are proposed to determine the signal setting of individual intersections for maximizing possible increase in total travel demand and the corresponding reserve capacity for each zone. The change of the origin–destination pattern with the variation of upper level decision variables is presented through the combined distribution/assignment model under user equilibrium conditions. Both singly constrained and doubly constrained combined models are considered for different trip purposes and data information. Furthermore, we have introduced the continuous network design problem by increasing road capacity and examined its effect on the land-use development potentiality of trip generation zone. A numerical example is presented to illustrate the application of the models and how a genetic algorithm is applied to solve the problem.  相似文献   

7.

There are many shortcomings commonly associated with the conventional urban transportation modeling process. This paper focuses on one of the more important problems — the inconsistency between trip generation and distribution components — and suggests a possible way of alleviating it. The suggested approach involves sorting out the independent effects on tripmaking of origin, destination and travel cost characteristics, and introducing accessibility measures explicitly into the modeling process. The resulting modeling framework can be used to obtain consistent estimates of trip generation and distribution quantities which are responsive to changes in the transportation and spatial systems.  相似文献   

8.
9.
A model of destination choice is developed in this study employing “prospective utility” of a destination zone as its attraction measure. The prospective utility accounts for future dependency of destination choice and makes possible relevant treatment of interdependent choices in a trip chain. A parameter is included in the model to represent the magnitude of the future dependency. Empirical estimation results show that destination choice is in fact future dependent and coefficients of travel time and zonal attribute variables may be biased if this depedency is not accounted for.  相似文献   

10.
11.
Aiming to develop a theoretically consistent framework to estimate travel demand using multiple data sources, this paper first proposes a multi-layered Hierarchical Flow Network (HFN) representation to structurally model different levels of travel demand variables including trip generation, origin/destination matrices, path/link flows, and individual behavior parameters. Different data channels from household travel surveys, smartphone type devices, global position systems, and sensors can be mapped to different layers of the proposed network structure. We introduce Big data-driven Transportation Computational Graph (BTCG), alternatively Beijing Transportation Computational Graph, as the underlying mathematical modeling tool to perform automatic differentiation on layers of composition functions. A feedforward passing on the HFN sequentially implements 3 steps of the traditional 4-step process: trip generation, spatial distribution estimation, and path flow-based traffic assignment, respectively. BTCG can aggregate different layers of partial first-order gradients and use the back-propagation of “loss errors” to update estimated demand variables. A comparative analysis indicates that the proposed methods can effectively integrate different data sources and offer a consistent representation of demand. The proposed methodology is also evaluated under a demonstration network in a Beijing subnetwork.  相似文献   

12.
Carsharing programs that operate as short-term vehicle rentals (often for one-way trips before ending the rental) like Car2Go and ZipCar have quickly expanded, with the number of US users doubling every 1–2 years over the past decade. Such programs seek to shift personal transportation choices from an owned asset to a service used on demand. The advent of autonomous or fully self-driving vehicles will address many current carsharing barriers, including users’ travel to access available vehicles.This work describes the design of an agent-based model for shared autonomous vehicle (SAV) operations, the results of many case-study applications using this model, and the estimated environmental benefits of such settings, versus conventional vehicle ownership and use. The model operates by generating trips throughout a grid-based urban area, with each trip assigned an origin, destination and departure time, to mimic realistic travel profiles. A preliminary model run estimates the SAV fleet size required to reasonably service all trips, also using a variety of vehicle relocation strategies that seek to minimize future traveler wait times. Next, the model is run over one-hundred days, with driverless vehicles ferrying travelers from one destination to the next. During each 5-min interval, some unused SAVs relocate, attempting to shorten wait times for next-period travelers.Case studies vary trip generation rates, trip distribution patterns, network congestion levels, service area size, vehicle relocation strategies, and fleet size. Preliminary results indicate that each SAV can replace around eleven conventional vehicles, but adds up to 10% more travel distance than comparable non-SAV trips, resulting in overall beneficial emissions impacts, once fleet-efficiency changes and embodied versus in-use emissions are assessed.  相似文献   

13.
Paleti  Rajesh  Balan  Lacramioara 《Transportation》2019,46(4):1467-1485

Travel surveys that elicit responses to questions regarding daily activity and travel choices form the basis for most of the transportation planning and policy analysis. The response variables collected in these surveys are prone to errors leading to mismeasurement or misclassification. Standard modeling methods that ignore these errors while modeling travel choices can lead to biased parameter estimates. In this study, methods available in the econometrics literature were used to quantify and assess the impact of misclassification errors in auto ownership choice data. The results uncovered significant misclassification rates ranging from 1 to 40% for different auto ownership alternatives. Also, the results from latent class models provide evidence for variation in misclassification probabilities across different population segments. Models that ignore misclassification were not only found to have lower statistical fit but also significantly different elasticity effects for choice alternatives with high misclassification probabilities. The methods developed in this study can be extended to analyze misclassification in several response variables (e.g., mode choice, activity purpose, trip/tour frequency, and mileage) that constitute the core of advanced travel demand models including tour and activity-based models.

  相似文献   

14.
Electric travelling appears to dominate the transport sector in the near future due to the needed transition from internal combustion vehicles (ICV) towards Electric Vehicles (EV) to tackle urban pollution. Given this trend, investigation of the EV drivers’ travel behaviour is of great importance to stakeholders including planners and policymakers, for example in order to locate charging stations. This research explores the Battery Electric Vehicle (BEV) drivers route choice and charging preferences through a Stated Preference (SP) survey. Collecting data from 505 EV drivers in the Netherlands, we report the results of estimating a Mixed Logit (ML) model for those choices. Respondents were requested to choose a route among six alternatives: freeways, arterial ways, and local streets with and without fast charging. Our findings suggest that the classic route attributes (travel time and travel cost), vehicle-related variables (state-of-charge at the origin and destination) and charging characteristics (availability of a slow charging point at the destination, fast charging duration, waiting time in the queue of a fast-charging station) can influence the BEV drivers route choice and charging behaviour significantly. When the state-of-charge (SOC) at the origin is high and a slow charger at the destination is available, routes without fast charging are likely to be preferred. Moreover, local streets (associated with slow speeds and less energy consumption) could be preferred if the SOC at the destination is expected to be low while arterial ways might be selected when a driver must recharge his/her car during the trip via fast charging.  相似文献   

15.
Most research on walking behavior has focused on mode choice or walk trip frequency. In contrast, this study is one of the first to analyze and model the destination choice behaviors of pedestrians within an entire region. Using about 4500 walk trips from a 2011 household travel survey in the Portland, Oregon, region, we estimated multinomial logit pedestrian destination choice models for six trip purposes. Independent variables included terms for impedance (walk trip distance), size (employment by type, households), supportive pedestrian environments (parks, a pedestrian index of the environment variable called PIE), barriers to walking (terrain, industrial-type employment), and traveler characteristics. Unique to this study was the use of small-scale destination zone alternatives. Distance was a significant deterrent to pedestrian destination choice, and people in carless or childless households were less sensitive to distance for some purposes. Employment (especially retail) was a strong attractor: doubling the number of jobs nearly doubled the odds of choosing a destination for home-based shopping walk trips. More attractive pedestrian environments were also positively associated with pedestrian destination choice after controlling for other factors. These results shed light on determinants of pedestrian destination choice behaviors, and sensitivities in the models highlight potential policy-levers to increase walking activity. In addition, the destination choice models can be applied in practice within existing regional travel demand models or as pedestrian planning tools to evaluate land use and transportation policy and investment scenarios.  相似文献   

16.
An analytical study is made of the determination of the travel intensity at an arbitrary point of a city with a straight line barrier. For a given origin and destination a trip is made by the shortest path not crossing the barrier or the city perimeter. The joint trip end distribution is arbitrary except for a continuity assumption.  相似文献   

17.
Abstract

Existing origin constrained and doubly constrained gravity models have not been compared, theoretically or empirically, in terms of their forecasting power. Due to the newly advanced technology of intelligent transport systems, the expanded data presently available have made various models more comparable in terms of forecasting power. This paper uses archived automatic passenger counting (APC) data for urban rail in the Seoul metropolitan area. The APC data contains information about each trip's origin, destination, ticket type, fare, and distance on a daily basis. The objective of this paper is to compare the goodness-of-fit of aggregate and disaggregate gravity modeling using these data. A Hyman aggregate gravity model is used as the aggregate model without the spatial effect. The disaggregate model adopts a multinomial logit as the destination choice model with the spatial effect. In general, while the formulation of aggregate and disaggregate gravity model models are similar, the calibration and parameter estimation methods of the two models are different. As a result, this empirical study demonstrates that the variation in goodness-of-fit and forecasting power largely depends on the estimation method and selected variables. The forecasting power of the disaggregate modeling approach outperforms that of the aggregate model. This paper further confirms that spatial arrangement plays important roles in gravity modeling.  相似文献   

18.
This paper presents a unified approach for improving travel demand models through the application and extension of supernetwork models of multi-dimensional travel choices. Proposed quite some time ago, supernetwork models solved to stochastic user equilibrium can provide a simultaneous solution to trip generation, distribution, mode choice, and assignment that is consistent with disaggregate models and predicts their aggregate effects. The extension to incorporate the time dimension through the use of dynamic equilibrium assignment methods is proposed as an enhancement that is necessary in order to produce realistic models. A variety of theoretical and practical problems are identified whose solution underlies implementation of this approach. Recommended future research includes improved algorithms for stochastic and dynamic equilibrium assignment, new methods for calibrating assignment models, and the use of Geographic Information Systems (GIS) technology for data and model management.  相似文献   

19.
A growing base of research adopts direct demand models to reveal associations between transit ridership and influence factors in recent years. This study is designed to investigate the factors affecting rail transit ridership at both station level and station-to-station level by adopting multiple regression model and multiplicative model respectively, specifically using an implemented Metro system in Nanjing, China, where Metro implementation is on the rise. Independent variables include factors measuring land-use mix, intermodal connection, station context, and travel impedance. Multiple regression model proves 11 variables are significantly associated with Metro ridership at station level: population, employment, business/office floor area, CBD dummy variable, number of major educational sites, entertainment venues and shopping centers, road length, feeder bus lines, bicycle park-and-ride (P&R) spaces, and transfer dummy variable. Results from multiplicative model indicate that factors influencing Metro station ridership may also influence Metro station-to-station ridership, varied by both trip ends (origin/destination) and time of day. In comparison with previous case studies, CBD dummy variable and bicycle P&R are statistically significant to explain Metro ridership in Nanjing. In addition, Metro travel impedance variables have significant influence on station-to-station ridership, representing the basic time-decay relationship in travel distribution. Potential implications of the model results include estimating Metro ridership at station level and station-to-station level by considering the significant variables, recognizing the necessity to establish a cooperative multi-modal transit system, and identifying opportunities for transit-oriented development.  相似文献   

20.
This paper proposes different policy scenarios to cut CO2 emissions caused by the urban mobility of passengers. More precisely, we compare the effects of the ‘direct tool’ of carbon tax, to a combination of ‘indirect tools’ – not originally aimed at reducing CO2 (i.e. congestion charging, parking charges and a reduction in public transport travel time) in terms of CO2 impacts through a change in the modal split. In our model, modal choices depend on individual characteristics, trip features (including the effects of policy tools), and land use at origin and destination zones. Personal “CO2 emissions budgets” resulting from the trips observed in the metropolitan area of Lille (France) in 2006 are calculated and compared to the situation related to the different policy scenarios. We find that an increase of 50% in parking charges combined with a cordon toll of €1.20 and a 10% travel time decrease in public transport services (made after recycling toll-revenues) is the winning scenario. The combined effects of all the policy scenarios are superior to their separate effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号