首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vehicular traffic congestion in a vehicle-to-vehicle (V2V) communication environment can lead to congestion effects for information flow propagation. Such congestion effects can impact whether a specific information packet of interest can reach a desired location, and if so, in a timely manner to influence the traffic system performance. Motivated by the usefulness and timeliness of information propagation, this paper aims to characterize the information flow propagation wave (IFPW) for an information packet in a congested V2V communication environment under an information relay control strategy. This strategy seeks to exclude information that is dated in the communication buffer under a first-in, first-out queue discipline, from being relayed if the information flow regime is congested. It trades off the need to enable the dissemination of every information packet as far as possible, against the congestion effects that accrue because of the presence of multiple information packets. A macroscopic two-layer model is proposed to characterize the IFPW. The upper layer is formulated as integro-differential equations to characterize the information dissemination in space and time under this control strategy. The lower layer adopts the Lighthill-Whitham-Richards model to capture the traffic flow dynamics. Based on the upper layer model, a necessary condition is derived which quantifies the expected time length that needs to be reserved for broadcasting the information packet of interest so as to ensure the formation of an IFPW under a given density of V2V-equipped vehicles. When the necessary condition is satisfied under homogeneous conditions, it is shown that the information packet can be propagated at an asymptotic speed whose value can be derived analytically. Besides, under the proposed control strategy, only a proportion of vehicles (labeled asymptotic density of informed vehicles) can receive the specific information packet, which can be estimated by solving a nonlinear equation. The asymptotic IFPW speed, the asymptotic density of informed vehicles, and the necessary condition for the IFPW, help in evaluating the timeliness of information propagation and the influence of traffic dynamics on information propagation. In addition, the proposed model can be used to numerically estimate the IFPW speed for heterogeneous conditions, which can aid in the design of traffic management strategies built upon the timely propagation of information through V2V communication.  相似文献   

2.
Connected Vehicle Technology (CVT) requires wireless data transmission between vehicles (V2V), and vehicle-to-infrastructure (V2I). Evaluating the performance of different network options for V2V and V2I communication that ensure optimal utilization of resources is a prerequisite when designing and developing robust wireless networks for CVT applications. Though dedicated short range communication (DSRC) has been considered as the primary communication option for CVT safety applications, the use of other wireless technologies (e.g., Wi-Fi, LTE, WiMAX) allow longer range communications and throughput requirements that could not be supported by DSRC alone. Further, the use of other wireless technology potentially reduces the need for costly DSRC infrastructure. In this research, the authors evaluated the performance of Het-Net consisting of Wi-Fi, DSRC and LTE technologies for V2V and V2I communications. An application layer handoff method was developed to enable Het-Net communication for two CVT applications: traffic data collection, and forward collision warning. The handoff method ensures the optimal utilization of available communication options (i.e., eliminate the need of using multiple communication options at the same time) and corresponding backhaul communication infrastructure depending on the connected vehicle application requirements. Field studies conducted in this research demonstrated that the use of Het-Net broadened the range and coverage of V2V and V2I communications. The use of the application layer handoff technique to maintain seamless connectivity for CVT applications was also successfully demonstrated and can be adopted in future Het-Net supported connected vehicle applications. A long handoff time was observed when the application switches from LTE to Wi-Fi. The delay is largely due to the time required to activate the 802.11 link and the time required for the vehicle to associate with the RSU (i.e., access point). Modifying the application to implement a soft handoff where a new network is seamlessly connected before breaking from the existing network can greatly reduce (or eliminate) the interruption of network service observed by the application. However, the use of a Het-Net did not compromise the performance of the traffic data collection application as this application does not require very low latency, unlike connected vehicle safety applications. Field tests revealed that the handoff between networks in Het-Net required several seconds (i.e., higher than 200 ms required for safety applications). Thus, Het-Net could not be used to support safety applications that require communication latency less than 200 ms. However, Het-Net could provide additional/supplementary connectivity for safety applications to warn vehicles upstream to take proactive actions to avoid problem locations. To validate and establish the findings from field tests that included a limited number of connected vehicles, ns-3 simulation experiments with a larger number of connected vehicles were conducted involving a DSRC and LTE Het-Net scenario. The latency and packet delivery error trend obtained from ns-3 simulation were found to be similar to the field experiment results.  相似文献   

3.
Vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication are emerging components of intelligent transport systems (ITS) based on which vehicles can drive in a cooperative way and, hence, significantly improve traffic flow efficiency. However, due to the high vehicle mobility, the unreliable vehicular communications such as packet loss and transmission delay can impair the performance of the cooperative driving system (CDS). In addition, the downstream traffic information collected by roadside sensors in the V2I communication may introduce measurement errors, which also affect the performance of the CDS. The goal of this paper is to bridge the gap between traffic flow modelling and communication approaches in order to build up better cooperative traffic systems. To this end, we aim to develop an enhanced cooperative microscopic (car-following) traffic model considering V2V and V2I communication (or V2X for short), and investigate how vehicular communications affect the vehicle cooperative driving, especially in traffic disturbance scenarios. For these purposes, we design a novel consensus-based vehicle control algorithm for the CDS, in which not only the local traffic flow stability is guaranteed, but also the shock waves are supposed to be smoothed. The IEEE 802.11p, the defacto vehicular networking standard, is selected as the communication protocols, and the roadside sensors are deployed to collect the average speed in the targeted area as the downstream traffic reference. Specifically, the imperfections of vehicular communication as well as the measured information noise are taken into account. Numerical results show the efficiency of the proposed scheme. This paper attempts to theoretically investigate the relationship between vehicular communications and cooperative driving, which is needed for the future deployment of both connected vehicles and infrastructure (i.e. V2X).  相似文献   

4.
In this paper, we present results regarding the experimental validation of connected automated vehicle design. In order for a connected automated vehicle to integrate well with human-dominated traffic, we propose a class of connected cruise control algorithms with feedback structure originated from human driving behavior. We test the connected cruise controllers using real vehicles under several driving scenarios while utilizing beyond-line-of-sight motion information obtained from neighboring human-driven vehicles via vehicle-to-everything (V2X) communication. We experimentally show that the design is robust against variations in human behavior as well as changes in the topology of the communication network. We demonstrate that both safety and energy efficiency can be significantly improved for the connected automated vehicle as well as for the neighboring human-driven vehicles and that the connected automated vehicle may bring additional societal benefits by mitigating traffic waves.  相似文献   

5.
Vehicle-to-vehicle (V2V) communications under the connected vehicle context have the potential to provide new paradigms to enhance the safety, mobility and environmental sustainability of surface transportation. Understanding the information propagation characteristics in space and time is a key enabler for V2V-based traffic systems. Most existing analytical models assume instantaneous propagation of information flow through multi-hop communications. Such an assumption ignores the spatiotemporal relationships between the traffic flow dynamics and V2V communication constraints. This study proposes a macroscopic two-layer model to characterize the information flow propagation wave (IFPW). The traffic flow propagation is formulated in the lower layer as a system of partial differential equations based on the Lighthill-Whitham-Richards model. Due to their conceptual similarities, the upper layer adapts and modifies a spatial Susceptible-Infected epidemic model to describe information dissemination between V2V-equipped vehicles using integro-differential equations. A closed-form solution is derived for the IFPW speed under homogeneous conditions. The IFPW speed is numerically determined for heterogeneous conditions. Numerical experiments illustrate the impact of traffic density and market penetration of V2V-equipped vehicles on the IFPW speed. The proposed model can capture the spatiotemporal relationships between the traffic and V2V communication layers, and aid in the design of novel information propagation strategies to manage traffic conditions under V2V-based traffic systems.  相似文献   

6.
In this paper, acceleration-based connected cruise control (CCC) is proposed to increase roadway traffic mobility. CCC is designed to be able to use acceleration signals received from multiple vehicles ahead through wireless vehicle-to-vehicle (V2V) communication. We consider various connectivity structures in heterogeneous platoons comprised of human-driven and CCC vehicles. We show that inserting a few CCC vehicles with appropriately designed gains and delays into the flow, one can stabilize otherwise string unstable vehicle platoons. Exploiting the flexibility of ad-hoc connectivity, CCC can be applied in a large variety of traffic scenarios. Moreover, using acceleration feedback in a selective manner, CCC provides robust performance and remains scalable for large systems of connected vehicles. Our conclusions are verified by simulations at the nonlinear level.  相似文献   

7.
Literature has shown potentials of Connected/Cooperative Automated Vehicles (CAVs) in improving highway operations, especially on roadway capacity and flow stability. However, benefits were also shown to be negligible at low market penetration rates. This work develops a novel adaptive driving strategy for CAVs to stabilise heterogeneous vehicle strings by controlling one CAV under vehicle-to-infrastructure (V2I) communications. Assumed is a roadside system with V2I communications, which receives control parameters of the CAV in the string and estimates parameters imperfectly of non-connected automated vehicles. It determines the adaptive control parameters (e.g. desired time gap and feedback gains) of the CAV if a downstream disturbance is identified and sends them to the CAV. The CAV changes its behaviour based on the adaptive parameters commanded by the roadside system to suppress the disturbance.The proposed adaptive driving strategy is based on string stability analysis of heterogeneous vehicle strings. To this end, linearised vehicle dynamics model and control law are used in the controller parametrisation and Laplace transform of the speed and gap error dynamics in time domain to frequency domain enables the determination of sufficient string stability criteria of heterogeneous strings. The analytical string stability conditions give new insights into automated vehicular string stability properties in relation to the system properties of time delays and controller design parameters of feedback gains and desired time gap. It further allows the quantification of a stability margin, which is subsequently used to adapt the feedback control gains and desired time gap of the CAV to suppress the amplification of gap and speed errors through the string.Analytical results are verified via systematic simulation of both homogeneous and heterogeneous strings. Simulation demonstrates the predictive power of the analytical string stability conditions. The performance of the adaptive driving strategy under V2I cooperation is tested in simulation. Results show that even the estimation of control parameters of non-connected automated vehicles are imperfect and there is mismatch between the model used in analytical derivation and that in simulation, the proposed adaptive driving strategy suppresses disturbances in a wide range of situations.  相似文献   

8.
The advancements in communication and sensing technologies can be exploited to assist the drivers in making better decisions. In this paper, we consider the design of a real-time cooperative eco-driving strategy for a group of vehicles with mixed automated vehicles (AVs) and human-driven vehicles (HVs). The lead vehicles in the platoon can receive the signal phase and timing information via vehicle-to-infrastructure (V2I) communication and the traffic states of both the preceding vehicle and current platoon via vehicle-to-vehicle (V2V) communication. We propose a receding horizon model predictive control (MPC) method to minimise the fuel consumption for platoons and drive the platoons to pass the intersection on a green phase. The method is then extended to dynamic platoon splitting and merging rules for cooperation among AVs and HVs in response to the high variation in urban traffic flow. Extensive simulation tests are also conducted to demonstrate the performance of the model in various conditions in the mixed traffic flow and different penetration rates of AVs. Our model shows that the cooperation between AVs and HVs can further smooth out the trajectory of the latter and reduce the fuel consumption of the entire traffic system, especially for the low penetration of AVs. It is noteworthy that the proposed model does not compromise the traffic efficiency and the driving comfort while achieving the eco-driving strategy.  相似文献   

9.
Research on connected vehicle environment has been growing rapidly to investigate the effects of real-time exchange of kinetic information between vehicles and road condition information from the infrastructure through radio communication technologies. A fully connected vehicle environment can substantially reduce the latency in response caused by human perception-reaction time with the prospect of improving both safety and comfort. This study presents a dynamical model of route choice under a connected vehicle environment. We analyze the stability of headways by perturbing various factors in the microscopic traffic flow model and traffic flow dynamics in the car-following model and dynamical model of route choice. The advantage of this approach is that it complements the macroscopic traffic assignment model of route choice with microscopic elements that represent the important features of connected vehicles. The gaps between cars can be decreased and stabilized even in the presence of perturbations caused by incidents. The reduction in gaps will be helpful to optimize the traffic flow dynamics more easily with safe and stable conditions. The results show that the dynamics under the connected vehicle environment have equilibria. The approach presented in this study will be helpful to identify the important properties of a connected vehicle environment and to evaluate its benefits.  相似文献   

10.
This study introduces a new CONnectivity ROBustness model (CONROB) to assess vehicle-to-vehicle communication in connected vehicle (CV) environments. CONROB is based on Newton’s universal law of gravitation and accounts for multiple factors affecting the connectivity in CV environments such as market penetration, wireless transmission range, spatial distribution of vehicles relative to each other, the spatial propagation of the wireless signal, and traffic density. The proposed methodology for the connectivity robustness calculation in CONROB accounts for the Link Expiration Time (LET) and the Route Expiration Time (RET) that are reflected in the stability of links between each two adjacent vehicles and the expiration time of communication routes between vehicles. Using a 117 sq-km (45-square mile) network in Washington County, located west of Portland city, Oregon, a microscopic simulation model (VISSIM) was built to verify CONROB model. A total of 45 scenarios were simulated for different traffic densities generated from five different traffic demand levels, three levels of market penetration (5%, 15%, and 25%), and three transmission range values [76 (250), 152 (500), and 305 (1000) m (ft)]. The simulation results show that the overall robustness increases as the market penetration increases, given the same transmission range, and relative traffic density. Similarly, the overall connectivity robustness increases as the relative traffic density increases for the same market penetration. More so, the connectivity robustness becomes more sensitive to the relative traffic density at higher values of transmission range and market penetration. Multiple regression analysis was conducted to show the significant effect of relative traffic density, transmission range, and market penetration on the robustness measure. The results of the study provide an evidence of the ability of the model to capture the effect of the different factors on the connectivity between vehicles, which provides a viable tool for assessing CV environments.  相似文献   

11.
This paper presents a fuel efficient control strategy for a group of connected hybrid electric vehicles (HEVs) in urban road conditions. A hierarchical control architecture is proposed in this paper for every HEV, where the higher level and the lower level controller share information with each other and solve two different problems that aim at improving its fuel efficiency. The higher level controller of each HEV is considered to utilize traffic light information, through vehicle to infrastructure (V2I) communication, and state information of the vehicles in its near neighborhood, via vehicle to vehicle (V2V) communication. Apart from that, the higher level controller of each HEV uses the recuperation information from the lower level controller and provides it the optimal velocity profile by solving its problem in a model predictive control framework. Each lower level controller uses adaptive equivalent consumption minimization strategy (ECMS) for following their velocity profiles, obtained from the higher level controller, in a fuel efficient manner. In this paper, the vehicles are modeled in Autonomie software and the simulation results are provided in the paper that shows the effectiveness of the proposed control architecture.  相似文献   

12.
The new generation of GPS-based tolling systems allow for a much higher degree of road sensing than has been available up to now. We propose an adaptive sampling scheme to collect accurate real-time traffic information from large-scale implementations of on-board GPS-based devices over a road network. The goal of the system is to minimize the transmission costs over all vehicles while satisfying requirements in the accuracy and timeliness of the traffic information obtained. The system is designed to make use of cellular communication as well as leveraging additional technologies such as roadside units equipped with WiFi and vehicle-to-vehicle (V2V) dedicated short-range communications (DSRC). As opposed to fixed sampling schemes, which transmit at regular intervals, the sampling policy we propose is adaptive to the road network and the importance of the links that the vehicle traverses. Since cellular communications are costly, in the basic centralized scheme, the vehicle is not aware of the road conditions on the network. We extend the scheme to handle non-cellular communications via roadside units and vehicle-to-vehicle (V2V) communication. Under a general traffic model, we prove that our scheme always outperforms the baseline scheme in terms of transmission cost while satisfying accuracy and real-time requirements. Our analytical results are further supported via simulations based on actual road networks for both the centralized and V2V settings.  相似文献   

13.
Vehicle-to-grid (V2G) is a technology which can reduce the cost for power distribution network operators by storing electricity in the batteries of electric-drive vehicles and retrieving it when energy demands increase during the course of a day. Participants of V2G are reimbursed for offering their vehicles which can lead to changes in trip schedules when V2G payments are high and travelers are sensitive to the payments. However, prior studies have ignored the effects of V2G on travelers’ schedules. This research gap is addressed with a bi-level V2G market equilibrium model where the lower level model determines the equilibrium activity patterns as a result of upper level pricing and linear approximated AC flow distribution decisions. An algorithm is proposed for the model and illustrated on a simple telecommuting example where travelers can work from home and offer their vehicle charge capacity to the power provider. The model is then applied to the same case study from Lam and Yin (2001) to first replicate the lower level equilibrium problem as a special case when no V2G is present, and then to show the potential effects of the V2G policy to decrease locational marginal prices for a distribution network operator. The proposed algorithm for the V2G policy resulted in a substantial 20% increase in social welfare over the benchmark equilibrium without V2G.  相似文献   

14.
The introduction of connected and autonomous vehicles will bring changes to the highway driving environment. Connected vehicle technology provides real-time information about the surrounding traffic condition and the traffic management center’s decisions. Such information is expected to improve drivers’ efficiency, response, and comfort while enhancing safety and mobility. Connected vehicle technology can also further increase efficiency and reliability of autonomous vehicles, though these vehicles could be operated solely with their on-board sensors, without communication. While several studies have examined the possible effects of connected and autonomous vehicles on the driving environment, most of the modeling approaches in the literature do not distinguish between connectivity and automation, leaving many questions unanswered regarding the implications of different contemplated deployment scenarios. There is need for a comprehensive acceleration framework that distinguishes between these two technologies while modeling the new connected environment. This study presents a framework that utilizes different models with technology-appropriate assumptions to simulate different vehicle types with distinct communication capabilities. The stability analysis of the resulting traffic stream behavior using this framework is presented for different market penetration rates of connected and autonomous vehicles. The analysis reveals that connected and autonomous vehicles can improve string stability. Moreover, automation is found to be more effective in preventing shockwave formation and propagation under the model’s assumptions. In addition to stability, the effects of these technologies on throughput are explored, suggesting substantial potential throughput increases under certain penetration scenarios.  相似文献   

15.
16.
Traffic signals, even though crucial for safe operations of busy intersections, are one of the leading causes of travel delays in urban settings, as well as the reason why billions of gallons of fuel are burned, and tons of toxic pollutants released to the atmosphere each year by idling engines. Recent advances in cellular networks and dedicated short-range communications make Vehicle-to-Infrastructure (V2I) communications a reality, as individual cars and traffic signals can now be equipped with communication and computing devices. In this paper, we first presented an integrated simulator with V2I, a car-following model and an emission model to simulate the behavior of vehicles at signalized intersections and calculate travel delays in queues, vehicle emissions, and fuel consumption. We then present a hierarchical green driving strategy based on feedback control to smooth stop-and-go traffic in signalized networks, where signals can disseminate traffic signal information and loop detector data to connected vehicles through V2I communications. In this strategy, the control variable is an individual advisory speed limit for each equipped vehicle, which is calculated from its location, signal settings, and traffic conditions. Finally, we quantify the mobility and environment improvements of the green driving strategy with respect to market penetration rates of equipped vehicles, traffic conditions, communication characteristics, location accuracy, and the car-following model itself, both in isolated and non-isolated intersections. In particular, we demonstrate savings of around 15% in travel delays and around 8% in fuel consumption and greenhouse gas emissions. Different from many existing ecodriving strategies in signalized road networks, where vehicles’ speed profiles are totally controlled, our strategy is hierarchical, since only the speed limit is provided, and vehicles still have to follow their leaders. Such a strategy is crucial for maintaining safety with mixed vehicles.  相似文献   

17.
Safety warning systems generally operate based on information from sensors attached to individual vehicles. Various types of data used for collision risk calculation can be categorized into two types, microscopic or macroscopic, depending on how the sensors collect the information of traffic state. Most collision warning systems use only either of these types of data, but they all have limitations imposed by the data, such as requirement of high installation cost and high market penetration rate of devices. In order to overcome these limits, we propose a collision warning system that utilizes the integrated information of macroscopic data and microscopic data, from loop detectors and smartphones respectively. The proposed system is evaluated by simulating a real vehicle trip based on the NGSIM data. We compare the results against collision warning systems based on macroscopic data from infrastructure and microscopic data from Vehicle-to-Vehicle information. The analysis of three systems shows two findings that (a) ICWS (Infrastructure-based Collision Warning System) is inadequate for immediate collision warning system and (b) VCWS (V2V communication based Collision Warning System) and HCWS (Hybrid Collision Warning System) produce collision warning at very similar timing, even with different behavior of individual drivers. Advantages of HCWS are that it can be directly applied to existing system with small additional cost, because data of loop detector are already available to be used in Korea and smartphones are widely spread. Also, the computation power distributed to each individual smartphone greatly increases the efficiency of the system by distributing the computation resources and load.  相似文献   

18.
Variable speed limit systems where variable message signs are used to show speed limits adjusted to the prevailing road or traffic conditions are installed on motorways in many countries. The objectives of variable speed limit system installations are often to decrease the number of accidents and to increase traffic efficiency. Currently, there is an interest in exploring the potential of cooperative intelligent transport systems including communication between vehicles and/or vehicles and the infrastructure. In this paper, we study the potential benefits of introducing infrastructure to vehicle communication, autonomous vehicle control and individualized speed limits in variable speed limit systems. We do this by proposing a cooperative variable speed limit system as an extension of an existing variable speed limit system. In the proposed system, communication between the infrastructure and the vehicles is used to transmit variable speed limits to upstream vehicles before the variable message signs become visible to the drivers. The system is evaluated by the means of microscopic traffic simulation. Traffic efficiency and environmental effects are considered in the analysis. The results of the study show benefits of the infrastructure to vehicle communication, autonomous vehicle control and individualized speed limits for variable speed limit systems in the form of lower acceleration rates and thereby harmonized traffic flow and reduced exhaust emissions.  相似文献   

19.
Recent developments of information and communication technologies (ICT) have enabled vehicles to timely communicate with each other through wireless technologies, which will form future (intelligent) traffic systems (ITS) consisting of so-called connected vehicles. Cooperative driving with the connected vehicles is regarded as a promising driving pattern to significantly improve transportation efficiency and traffic safety. Nevertheless, unreliable vehicular communications also introduce packet loss and transmission delay when vehicular kinetic information or control commands are disseminated among vehicles, which brings more challenges in the system modeling and optimization. Currently, no data has been yet available for the calibration and validation of a model for ITS, and most research has been only conducted for a theoretical point of view. Along this line, this paper focuses on the (theoretical) development of a more general (microscopic) traffic model which enables the cooperative driving behavior via a so-called inter-vehicle communication (IVC). To this end, we design a consensus-based controller for the cooperative driving system (CDS) considering (intelligent) traffic flow that consists of many platoons moving together. More specifically, the IEEE 802.11p, the de facto vehicular networking standard required to support ITS applications, is selected as the IVC protocols of the CDS, in order to investigate how the vehicular communications affect the features of intelligent traffic flow. This study essentially explores the relationship between IVC and cooperative driving, which can be exploited as the reference for the CDS optimization and design.  相似文献   

20.
The Cooperative Awareness Basic Service and Decentralized Environmental Notification Basic Service have been standardized by the European Telecommunications Standards Institute (ETSI) to support vehicular safety and traffic efficiency applications needing continuous status information about surrounding vehicles and asynchronous notification of events, respectively. These standard specifications detail not only the packet formats for both the Cooperative Awareness Message (CAM) and Decentralized Environmental Notification Message (DENM), but also the general message dissemination rules. These basic services, also known as facilities, have been developed as part of a set of standards in which both ISO and ETSI describe the Reference Communication Architecture for future Intelligent Transportation Systems (ITS). By using a communications stack that instantiates this reference architecture, this paper puts in practice the usage of both facilities in a real vehicular scenario. This research work details implementation decisions and evaluates the performance of CAM and DENM facilities through a experimental testbed deployed in a semi-urban environment that uses IEEE 802.11p (ETSI G5-compliant), which is a WiFi-like communication technology conceived for vehicular communications. On the one hand, this validation considers the development of two ITS applications using CAM and DENM functionalities for tracking vehicles and disseminating traffic incidences. In this case, CAM and DENM have demonstrated to be able to offer all the necessary functionality for the study case. On the other hand, both facilities have been also validated in a extensive testing campaign in order to analyze the influence in CAM and DENM performance of aspects such as vehicle speed, signal quality or message dissemination rules. In these tests, the line of sight, equipment installation point and hardware capabilities, have been found as key variables in the network performance, while the vehicle speed has implied a slight impact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号