共查询到20条相似文献,搜索用时 0 毫秒
1.
Existing roundabout simulation models fail to consider all types of driver behavior which compromises their accuracy and ability to accurately evaluate roundabout performance. Further, these non-compliant driver behaviors, including priority taking and priority abstaining, are inconsistent with existing traffic flow theories. In this paper, a new cellular automata model, C.A.Rsim, is developed and calibrated with field data from five single-lane roundabouts in four northeastern states. Model results indicate that approximately 20% of the individuals in the driver population are inclined to priority taking and approximately 20% are inclined to priority abstaining behavior, though the observed levels of these types of behavior are naturally lower and vary with traffic volume. The model results also corroborate other research indicating that current models can overestimate capacity at higher circulating volumes, possibly a result of the jamming effect produced by priority taking behavior. The reduction in priority abstaining behavior, which is observed at older roundabouts, significantly reduces delay and queue length in certain traffic volumes. C.A.Rsim is also more parsimonious than many existing microsimulation models. These results provide insight on how variations in conflicting flow (i.e., traffic volume and turning movement balance) impact the amount of observed non-compliant behavior. 相似文献
2.
Under the Connected Vehicle environment where vehicles and road-side infrastructure can communicate wirelessly, the Advanced Driver Assistance Systems (ADAS) can be adopted as an actuator for achieving traffic safety and mobility optimization at highway facilities. In this regard, the traffic management centers need to identify the optimal ADAS algorithm parameter set that leads to the optimization of the traffic safety and mobility performance, and broadcast the optimal parameter set wirelessly to individual ADAS-equipped vehicles. Once the ADAS-equipped drivers implement the optimal parameter set, they become active agents that work cooperatively to prevent traffic conflicts, and suppress the development of traffic oscillations into heavy traffic jams. Measuring systematic effectiveness of this traffic management requires am analytic capability to capture the quantified impact of the ADAS on individual drivers’ behaviors and the aggregated traffic safety and mobility improvement due to such an impact. To this end, this research proposes a synthetic methodology that incorporates the ADAS-affected driving behavior modeling and state-of-the-art microscopic traffic flow modeling into a virtually simulated environment. Building on such an environment, the optimal ADAS algorithm parameter set is identified through a multi-objective optimization approach that uses the Genetic Algorithm. The developed methodology is tested at a freeway facility under low, medium and high ADAS market penetration rate scenarios. The case study reveals that fine-tuning the ADAS algorithm parameter can significantly improve the throughput and reduce the traffic delay and conflicts at the study site in the medium and high penetration scenarios. In these scenarios, the ADAS algorithm parameter optimization is necessary. Otherwise the ADAS will intensify the behavior heterogeneity among drivers, resulting in little traffic safety improvement and negative mobility impact. In the high penetration rate scenario, the identified optimal ADAS algorithm parameter set can be used to support different control objectives (e.g., safety improvement has priority vs. mobility improvement has priority). 相似文献
3.
This paper considers the problem of short to mid-term aircraft trajectory prediction, that is, the estimation of where an aircraft will be located over a 10–30 min time horizon. Such a problem is central in decision support tools, especially in conflict detection and resolution algorithms. It also appears when an air traffic controller observes traffic on the radar screen and tries to identify convergent aircraft, which may be in conflict in the near future. An innovative approach for aircraft trajectory prediction is presented in this paper. This approach is based on local linear functional regression that considers data preprocessing, localizing and solving linear regression using wavelet decomposition. This algorithm takes into account only past radar tracks, and does not use any physical or aeronautical parameters. This approach has been successfully applied to aircraft trajectories between several airports on the data set that is one year air traffic over France. The method is intrinsic and independent from airspace structure. 相似文献
4.
在车辆行驶过程中,行车环境包含了大量的交通信息.道路条件以及管理手段等因素最终影响到驾驶员的信息处理强度.文章通过探讨驾驶员信息处理过程,建立了一种基于驾驶员信息处理强度的道路交通安全评价模型.在示例中,把道路交通信息量定义为道路几何曲率的一次函数,并结合相邻路段运行速度差给出评价指标. 相似文献
5.
Connected vehicle technology can be beneficial for traffic operations at intersections. The information provided by cars equipped with this technology can be used to design a more efficient signal control strategy. Moreover, it can be possible to control the trajectory of automated vehicles with a centralized controller. This paper builds on a previous signal control algorithm developed for connected vehicles in a simple, single intersection. It improves the previous work by (1) integrating three different stages of technology development; (2) developing a heuristics to switch the signal controls depending on the stage of technology; (3) increasing the computational efficiency with a branch and bound solution method; (4) incorporating trajectory design for automated vehicles; (5) using a Kalman filter to reduce the impact of measurement errors on the final solution. Three categories of vehicles are considered in this paper to represent different stages of this technology: conventional vehicles, connected but non-automated vehicles (connected vehicles), and automated vehicles. The proposed algorithm finds the optimal departure sequence to minimize the total delay based on position information. Within each departure sequence, the algorithm finds the optimal trajectory of automated vehicles that reduces total delay. The optimal departure sequence and trajectories are obtained by a branch and bound method, which shows the potential of generalizing this algorithm to a complex intersection.Simulations are conducted for different total flows, demand ratios and penetration rates of each technology stage (i.e. proportion of each category of vehicles). This algorithm is compared to an actuated signal control algorithm to evaluate its performance. The simulation results show an evident decrease in the total number of stops and delay when using the connected vehicle algorithm for the tested scenarios with information level of as low as 50%. Robustness of this algorithm to different input parameters and measurement noises are also evaluated. Results show that the algorithm is more sensitive to the arrival pattern in high flow scenarios. Results also show that the algorithm works well with the measurement noises. Finally, the results are used to develop a heuristic to switch between the different control algorithms, according to the total demand and penetration rate of each technology. 相似文献
6.
Information from connected vehicles, such as the position and speed of individual vehicles, can be used to optimize traffic operations at an intersection. This paper proposes such an algorithm for two one-way-streets assuming that only a certain percentage of cars are equipped with this technology. The algorithm enumerates different sequences of cars discharging from the intersection to minimize the objective function. Benefits of platooning (multiple cars consecutively discharging from a queue) and signal flexibility (adaptability to demand) are also considered. The goal is to gain insights about the value (in terms of delay savings) of using connected vehicle technology for intersection control.Simulations are conducted for different total demand values and demand ratios to understand the effects of changing the minimum green time at the signal and the penetration rate of connected cars. Using autonomous vehicle control systems, the signal could rapidly change the direction of priority without relying on the reaction of drivers. However, without this technology a minimum green time is necessary. The results of the simulations show that a minimum green time increases the delay only for the low and balanced demand scenarios. Therefore, the value of using cars with autonomous vehicle control can only be seen at intersections with this kind of demand patterns, and could result in up to 7% decrease in delay. On the other hand, using information from connected vehicles to better adapt the traffic signal has proven to be indeed very valuable. Increases in the penetration rate from 0% up to 60% can significantly reduce the average delay (in low demand scenarios a decrease in delay of up to 60% can be observed). That being said, after a penetration rate of 60%, while the delays continue to decrease, the rate of reduction decreases and the marginal value of information from communication technologies diminishes. Overall, it is observed that connected vehicle technology could significantly improve the operation of traffic at signalized intersections, at least under the proposed algorithm. 相似文献
7.
Usually, road networks are characterized by their great dynamics including different entities in interactions. This leads to more complex road traffic management. This paper proposes an adaptive multiagent system based on the ant colony behavior and the hierarchical fuzzy model. This system allows adjusting efficiently the road traffic according to the real-time changes in road networks by the integration of an adaptive vehicle route guidance system. The proposed system is implemented and simulated under a multiagent platform in order to discuss the improvement of the global road traffic quality in terms of time, fluidity and adaptivity. 相似文献
8.
Samir A. Ahmed 《运输规划与技术》2013,36(3):183-187
This paper explores the historical trends in freeway traffic management technology in the U.S., and the most likely projections for the coming two decades. First, existing computer‐supervised freeway surveillance and control techniques are reviewed with particular emphasis on the scientific and technological landmarks which has led to the evolution of these techniques. Next, the major underlying trends which bear on the future of automated freeway surveillance and control are identified. Finally, extrapolative projections are made to determine the most likely future of this technology. The paper concludes with implications for the issues of meeting short‐term transportation needs of urban areas through more efficient use of existing transportation facilities. 相似文献
9.
Over the past decades there has been a considerable development in the modeling of car-following (CF) behavior as a result of research undertaken by both traffic engineers and traffic psychologists. While traffic engineers seek to understand the behavior of a traffic stream, traffic psychologists seek to describe the human abilities and errors involved in the driving process. This paper provides a comprehensive review of these two research streams.It is necessary to consider human-factors in CF modeling for a more realistic representation of CF behavior in complex driving situations (for example, in traffic breakdowns, crash-prone situations, and adverse weather conditions) to improve traffic safety and to better understand widely-reported puzzling traffic flow phenomena, such as capacity drop, stop-and-go oscillations, and traffic hysteresis. While there are some excellent reviews of CF models available in the literature, none of these specifically focuses on the human factors in these models.This paper addresses this gap by reviewing the available literature with a specific focus on the latest advances in car-following models from both the engineering and human behavior points of view. In so doing, it analyses the benefits and limitations of various models and highlights future research needs in the area. 相似文献
11.
When operated at low speeds, electric and hybrid vehicles have created pedestrian safety concerns in congested areas of various city centers, because these vehicles have relatively silent engines compared to those of internal combustion engine vehicles, resulting in safety issues for pedestrians and cyclists due to the lack of engine noise to warn them of an oncoming electric or hybrid vehicle. However, the driver behavior characteristics have also been considered in many studies, and the high end-prices of electric vehicles indicate that electric vehicle drivers tend to have a higher prosperity index and are more likely to receive a better education, making them more alert while driving and more likely to obey traffic rules. In this paper, the positive and negative factors associated with electric vehicle adoption and the subsequent effects on pedestrian traffic safety are investigated using an agent-based modeling approach, in which a traffic micro-simulation of a real intersection is simulated in 3D using AnyLogic software. First, the interacting agents and dynamic parameters are defined in the agent-based model. Next, a 3D intersection environment is created to integrate the agent-based model into a visual simulation, where the simulation records the number of near-crashes occurring in certain pedestrian crossings throughout the virtual time duration of a year. A sensitivity analysis is also carried out with 9000 subsequent simulations performed in a supercomputer to account for the variation in dynamic parameters (ambient sound level, vehicle sound level, and ambient illumination). According to the analysis, electric vehicles have a 30% higher pedestrian traffic safety risk than internal combustion engine vehicles under high ambient sound levels. At low ambient sound levels, however, electric vehicles have only a 10% higher safety risk for pedestrians. Low levels of ambient illumination also increase the number of pedestrians involved in near-crashes for both electric vehicles and combustion engine vehicles. 相似文献
12.
Active Traffic Management (ATM) systems have been emerging in recent years in the US and Europe. They provide control strategies to improve traffic flow and reduce congestion on freeways. This study investigates the feasibility of utilizing a Variable Speed Limits (VSL) system, one key part of ATM, to improve traffic safety on freeways. A proactive traffic safety improvement VSL control algorithm is proposed. First, an extension of the METANET (METANET: A macroscopic simulation program for motorway networks) traffic flow model is employed to analyze VSL’s impact on traffic flow. Then, a real-time crash risk evaluation model is estimated for the purpose of quantifying crash risk. Finally, optimal VSL control strategies are achieved by employing an optimization technique to minimize the total crash risk along the VSL implementation corridor. Constraints are setup to limit the increase of average travel time and the differences of the posted speed limits temporarily and spatially. This novel VSL control algorithm can proactively reduce crash risk and therefore improve traffic safety. The proposed VSL control algorithm is implemented and tested for a mountainous freeway bottleneck area through the micro-simulation software VISSIM. Safety impacts of the VSL system are quantified as crash risk improvements and speed homogeneity improvements. Moreover, three different driver compliance levels are modeled in VISSIM to monitor the sensitivity of VSL effects on driver compliance. Conclusions demonstrated that the proposed VSL system could improve traffic safety by decreasing crash risk and enhancing speed homogeneity under both the high and moderate compliance levels; while the VSL system fails to significantly enhance traffic safety under the low compliance scenario. Finally, future implementation suggestions of the VSL control strategies and related research topics are also discussed. 相似文献
13.
Several unconventional intersection designs have been proposed as an innovative approach to mitigate congestion at heavily congested at‐grade signalized intersections. Many of these unconventional designs were shown to outperform conventional intersections in terms of the average control delay and the overall intersection capacity. Little research has been conducted to compare the performance of these unconventional intersections to each other under different volume conditions. This study evaluated and compared the operational performance of four unconventional intersection schemes: the crossover displaced left‐turn (XDL), the upstream signalized crossover (USC), the double crossover intersection (DXI) (i.e., half USC), and the median U‐turn (MUT). The micro‐simulation software vissim (PTV Planung Transport Verkehr AG, Karlsruhe, Germany) was used to model and analyze the four unconventional intersections as well as a counterpart conventional one. The results showed that the XDL intersection constantly exhibited the lowest delays at nearly all tested balanced and unbalanced volume levels. The operational performance of both the USC and the DXI was similar in most volume conditions. The MUT design, on the other hand, was unable to accommodate high approach volumes and heavy left‐turn traffic. The capacity of the XDL intersection was found to be 99% higher than that of the conventional intersection, whereas the capacity of the USC and the DXI intersections was about 50% higher than that of the conventional intersection. The results of this study can provide guidance on choosing among alternative unconventional designs according to the prevailing traffic conditions at an intersection. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
14.
Unconventional intersection designs have been recently proposed as a new approach to deal with heavy left turns at signalized intersections. One of these unconventional schemes, the Upstream Signalized Crossover (USC) intersection, was shown to significantly reduce average vehicle delays; particularly when the volumes entering the intersection are relatively high. The Ministry of Public Works of Qatar is considering the implementation of the USC intersection on three signalized intersections along a major urban corridor in Doha. This paper investigates the potential improvements associated with the USC implementation. VISSIM was used to analyze the proposed USC intersections and the existing conventional intersections. Analyses were carried out for AM , Midday, and PM peak hours. The results showed that most of the travel time measurement sections experienced lower delays in the USC configuration for the three peak periods. As well, the total system delay, in hours, for the USC configuration was less than that of the conventional configuration by 19.4, 14.8, and 13.6% for the AM , Midday, and PM peaks, respectively. The average control delay for each single USC intersection was lower than its conventional counterpart by between 7.6 and 22.9%. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
15.
This paper presents a trajectory clustering method to discover spatial and temporal travel patterns in a traffic network. The study focuses on identifying spatially distinct traffic flow groups using trajectory clustering and investigating temporal traffic patterns of each spatial group. The main contribution of this paper is the development of a systematic framework for clustering and classifying vehicle trajectory data, which does not require a pre-processing step known as map-matching and directly applies to trajectory data without requiring the information on the underlying road network. The framework consists of four steps: similarity measurement, trajectory clustering, generation of cluster representative subsequences, and trajectory classification. First, we propose the use of the Longest Common Subsequence (LCS) between two vehicle trajectories as their similarity measure, assuming that the extent to which vehicles’ routes overlap indicates the level of closeness and relatedness as well as potential interactions between these vehicles. We then extend a density-based clustering algorithm, DBSCAN, to incorporate the LCS-based distance in our trajectory clustering problem. The output of the proposed clustering approach is a few spatially distinct traffic stream clusters, which together provide an informative and succinct representation of major network traffic streams. Next, we introduce the notion of Cluster Representative Subsequence (CRS), which reflects dense road segments shared by trajectories belonging to a given traffic stream cluster, and present the procedure of generating a set of CRSs by merging the pairwise LCSs via hierarchical agglomerative clustering. The CRSs are then used in the trajectory classification step to measure the similarity between a new trajectory and a cluster. The proposed framework is demonstrated using actual vehicle trajectory data collected from New York City, USA. A simple experiment was performed to illustrate the use of the proposed spatial traffic stream clustering in application areas such as network-level traffic flow pattern analysis and travel time reliability analysis. 相似文献
16.
European Union regulations require haulage companies of member states like the UK to keep records of their drivers’ hours of work. All heavy goods vehicles (HGV's) over 7.5 tonnes are fitted with tachographs which record a driver's operating activities (periods of driving, other work and rest). These records are etched onto a laminated chart by various styli, one of which records the vehicle's speed. This paper describes the development and testing of a new technique for extracting individual driving characteristics from the speed trace of an HGV tachograph chart to calculate four parameters: distance travelled, average speed, time travelled and speed variability. The average speed, time travelled and speed variability were analysed statistically using one‐way analysis of variance tests. Speed variability was found to be particularly useful for identifying differences between individual driver's behaviour. Once differences in behaviours can be identified it may be possible to link certain driving habits to factors such as component wear, accident rates and excessive fuel usage. 相似文献
17.
Javier Alonso Vicente Milanés Joshué Pérez Enrique Onieva Carlos González Teresa de Pedro 《Transportation Research Part C: Emerging Technologies》2011,19(6):1095-1110
This article presents a cooperative manoeuvre among three dual mode cars – vehicles equipped with sensors and actuators, and that can be driven either manually or autonomously. One vehicle is driven autonomously and the other two are driven manually. The main objective is to test two decision algorithms for priority conflict resolution at intersections so that a vehicle autonomously driven can take their own decision about crossing an intersection mingling with manually driven cars without the need for infrastructure modifications. To do this, the system needs the position, speeds, and turning intentions of the rest of the cars involved in the manoeuvre. This information is acquired via communications, but other methods are also viable, such as artificial vision. The idea of the experiments was to adjust the speed of the manually driven vehicles to force a situation where all three vehicles arrive at an intersection at the same time. 相似文献
18.
Arne Kesting Martin Treiber Martin Schnhof Dirk Helbing 《Transportation Research Part C: Emerging Technologies》2008,16(6):668-683
We present an adaptive cruise control (ACC) strategy where the acceleration characteristics, that is, the driving style automatically adapts to different traffic situations. The three components of the concept are the ACC itself, implemented in the form of a car-following model, an algorithm for the automatic real-time detection of the traffic situation based on local information, and a strategy matrix to adapt the driving characteristics (that is, the parameters of the ACC controller) to the traffic conditions. Optionally, inter-vehicle and infrastructure-to-car communication can be used to improve the accuracy of determining the traffic states. Within a microscopic simulation framework, we have simulated the complete concept on a road section with an on-ramp bottleneck, using empirical loop-detector data for an afternoon rush-hour as input for the upstream boundary. We found that the ACC vehicles improve the traffic stability and the dynamic road capacity. While traffic congestion in the reference scenario was completely eliminated when simulating a proportion of 25% ACC vehicles, travel times were already significantly reduced for much lower penetration rates. The efficiency of the proposed driving strategy even for low market penetrations is a promising result for a successful application in future driver assistance systems. 相似文献
19.
This article highlights eco-driving as an available policy option to reduce climate altering GHG emissions. Recognizing the need to reduce the environmental impact of its fleet operations, the City of Calgary is a leader in developing programs and policies that aim to reduce GHG emissions and associated pollutants resulting from the use of fossil fuels. Among local action taken against climate change, the City sought to quantify CO2 emissions reductions from their municipal fleet as a result of eco-driver training, with a specific focus on engine idling. Fifteen drivers from the Development & Building Approvals Business Unit had in-vehicle monitoring technology (CarChips®) installed into their vehicles as part of a three-phase research process. The results show that gasoline and hybrid vehicles decreased average idling between 4% and 10% per vehicle per day, leading to an average emissions decrease of 1.7 kg of CO2 per vehicle per day. 相似文献
20.
Probe vehicles provide some of the most useful data for road traffic monitoring because they can acquire wide-ranging and spatiotemporally detailed information at a relatively low cost compared with traditional fixed-point observation. However, current GPS-equipped probe vehicles cannot directly provide us volume-related variables such as flow and density. In this paper, we propose a new probe vehicle-based estimation method for obtaining volume-related variables by assuming that a probe vehicle can measure the spacing to its leading one. This assumption can be realized by utilizing key technologies in advanced driver assistance systems that are expected to spread in the near future. We developed a method of estimating the flow, density, and speed from the probe vehicle data without exogenous assumptions on traffic flow characteristics, such as a fundamental diagram. In order to quantify the characteristics of the method, we performed a field experiment at a real-world urban expressway by employing prototypes of the probe vehicles with spacing measurement equipment. The result showed that the proposed method could accurately estimate the 5 min and hourly traffic volumes with probe vehicle penetration rate of 3.5% and 0.2%, respectively. 相似文献