首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The use of mobile phones while driving—one of the most common driver distractions—has been a significant research interest during the most recent decade. While there has been a considerable amount research and excellent reviews on how mobile phone distractions influence various aspects of driving performance, the mechanisms by which the interactions with mobile phone affect driver performance is relatively unexamined. As such, the aim of this study is to examine the mechanisms involved with mobile phone distractions such as conversing, texting, and reading and the driving task, and subsequent outcomes. A novel human-machine framework is proposed to isolate the components and various interactions associated with mobile phone distracted driving. The proposed framework specifies the impacts of mobile phone distraction as an inter-related system of outcomes such as speed selection, lane deviations and crashes; human-car controls such as steering control and brake pedal use and human-environment interactions such as visual scanning and navigation. Eleven literature-review/meta-analyses papers and 62 recent research articles from 2005 to 2015 are critically reviewed and synthesised following a systematic classification scheme derived from the human-machine system framework. The analysis shows that while many studies have attempted to measure system outcomes or driving performance, research on how drivers interactively manage in-vehicle secondary tasks and adapt their driving behaviour while distracted is scant. A systematic approach may bolster efforts to examine comprehensively the performance of distracted drivers and their impact over the transportation system by considering all system components and interactions of drivers with mobile phones and vehicles. The proposed human-machine framework not only contributes to the literature on mobile phone distraction and safety, but also assists in identifying the research needs and promising strategies for mitigating mobile phone-related safety issues. Technology based countermeasures that can provide real-time feedback or alerts to drivers based on eye/head movements in conjunction with vehicle dynamics should be an important research direction.  相似文献   

2.
Lamble  Dave  Rajalin  Sirpa  Summala  Heikki 《Transportation》2002,29(3):223-236
This paper reviews two road-user surveys on the use of mobile phones on the road in Finland where the mobile phone ownership rate is highest in the world (70% in August 2000). From 1998 to 1999 the proportion of drivers that chose to use a mobile phone while driving rose from 56% to 68%, while the proportion of phone using drivers who experienced dangerous situations due to phone use rose from 44% to 50%. The proportion of drivers who used their phones in some way to benefit safety on the road remained at about 55%. The youngest, novice drivers had the highest level of phone usage of all age categories. Over 48% of the interviewees believed that the government should ban the use of hand-held mobile phones while driving, and another 27% believed that all types of mobile phone use should be banned while driving. Those drivers who used their phones the most each day were more likely to want some form of restrictions, than those who had lower usage. This is a strong message to the elected lawmakers and raises the problem of exactly how regulatory bodies would go about controlling the future growth of new driver support and non-driving related communication devices in road vehicles. It was concluded that legislating for hands-free use only would be a reasonable course of action. Mandating that the current generation of equipment should be optimized for hands-free use should result in future generations of in-vehicle equipment also being optimized for hands-free use as a minimum criterion.  相似文献   

3.
One full year of high-resolution driving data from 484 instrumented gasoline vehicles in the US is used to analyze daily driving patterns, and from those infer the range requirements of electric vehicles (EVs). We conservatively assume that EV drivers would not change their current gasoline-fueled driving patterns and that they would charge only once daily, typically at home overnight. Next, the market is segmented into those drivers for whom a limited-range vehicle would meet every day’s range need, and those who could meet their daily range need only if they make adaptations on some days. Adaptations, for example, could mean they have to either recharge during the day, borrow a liquid-fueled vehicle, or save some errands for the subsequent day. From this analysis, with the stated assumptions, we infer the potential market share for limited-range vehicles. For example, we find that 9% of the vehicles in the sample never exceeded 100 miles in one day, and 21% never exceeded 150 miles in one day. These drivers presumably could substitute a limited-range vehicle, like electric vehicles now on the market, for their current gasoline vehicle without any adaptation in their driving at all. For drivers who are willing to make adaptations on 2 days a year, the same 100 mile range EV would meet the needs of 17% of drivers, and if they are willing to adapt every other month (six times a year), it would work for 32% of drivers. Thus, it appears that even modest electric vehicles with today’s limited battery range, if marketed correctly to segments with appropriate driving behavior, comprise a large enough market for substantial vehicle sales. An additional analysis examines driving versus parking by time of day. On the average weekday at 5 pm, only 15% of the vehicles in the sample are on the road; at no time during the year are fewer than 75% of vehicles parked. Also, because the return trip home is widely spread in time, even if all cars plug in and begin charging immediately when they arrive home and park, the increased demand on the electric system is less problematic than prior analyses have suggested.  相似文献   

4.
Driver cognitive distraction (e.g., hand-free cell phone conversation) can lead to unapparent, but detrimental, impairment to driving safety. Detecting cognitive distraction represents an important function for driver distraction mitigation systems. We developed a layered algorithm that integrated two data mining methods—Dynamic Bayesian Network (DBN) and supervised clustering—to detect cognitive distraction using eye movement and driving performance measures. In this study, the algorithm was trained and tested with the data collected in a simulator-based study, where drivers drove either with or without an auditory secondary task. We calculated 19 distraction indicators and defined cognitive distraction using the experimental condition (i.e., “distraction” as in the drives with the secondary task, and “no distraction” as in the drives without the secondary task). We compared the layered algorithm with previously developed DBN and Support Vector Machine (SVM) algorithms. The results showed that the layered algorithm achieved comparable prediction performance as the two alternatives. Nonetheless, the layered algorithm shortened training and prediction time compared to the original DBN because supervised clustering improved computational efficiency by reducing the number of inputs for DBNs. Moreover, the supervised clustering of the layered algorithm revealed rich information on the relationship between driver cognitive state and performance. This study demonstrates that the layered algorithm can capitalize on the best attributes of component data mining methods and can identify human cognitive state efficiently. The study also shows the value in considering the supervised clustering method as an approach to feature reduction in data mining applications.  相似文献   

5.
We assess the increase in particle number emissions from motor vehicles driving at steady speed when forced to stop and accelerate from rest. Considering the example of a signalized pedestrian crossing on a two-way single-lane urban road, we use a complex line source method to calculate the total emissions produced by a specific number and mix of light petrol cars and diesel passenger buses and show that the total emissions during a red light is significantly higher than during the time when the light remains green. Replacing two cars with one bus increased the emissions by over an order of magnitude.  相似文献   

6.
Abstract

This paper investigates the effects of mobile phone use while driving on traffic speed and headways, with particular focus on young drivers. For this purpose, a field survey was carried out in real road traffic conditions, in which drivers' speeds and headways were measured while using or not using a mobile phone. The survey took place within a University Campus area, allowing to distinguish between settings approximating to either free flow or interrupted flow conditions. Linear and loglinear regression methods were used to investigate the effects of mobile phone use and several other young driver characteristics, such as gender, driving experience and annual distance travelled, on vehicle speeds and headways. Separate models were developed for average free flow, interrupted flow, as well as for total average speed. Results show that mobile phone use leads to a statistically significant reduction in traffic speeds of young drivers in all types of traffic conditions. Furthermore, male and female drivers reduce their speed similarly when using a mobile phone while driving. However, male drivers using their mobile phone drive at lower speeds than female drivers not using their mobile phones. Sensitivity analysis revealed that, among all explanatory variables, the effect of mobile phone use on speed was most important. Accordingly, vehicle headways appear to increase for drivers using their mobile phone. However, this effect could not be statistically validated, due to the strong correlation between speed and headway.  相似文献   

7.
This paper evaluates the effectiveness of feedback, based on In-Vehicle Data Recorders (IVDR), to improve driving behavior, increase driving safety, and reduce fuel consumption. We developed a framework for driving-behavior measurement, incorporating second-by-second data collected by IVDRs. IVDR units were installed in over 150 vehicles driven by more than 350 drivers for over a year. The experiment was divided into three stages. The first stage was a “blind”, control stage, with no feedback. The second stage incorporated verbal feedback given only to riskiest drivers. In the third stage all drivers received a bi-weekly written report about their driving performance. Safety events, such as braking, lateral acceleration or speeding, were recorded. Supplementary data regarding safety related events and fuel consumption were also collected. Safety incidents and fuel consumption were modeled as a function of IVDR measurement-based events, in order to identify which events best reflect safety incidents and excessive fuel consumption. Our results show that braking events best explain safety incidents, and all events together best explain fuel consumption. In addition, we found that for the riskiest drivers, feedback significantly reduced the IVDR events. Our models show that feedback can lead to a reduction of 8% in safety incidents, and 3–10% in fuel consumption, with a larger reduction obtained for large vehicles.  相似文献   

8.
When operated at low speeds, electric and hybrid vehicles have created pedestrian safety concerns in congested areas of various city centers, because these vehicles have relatively silent engines compared to those of internal combustion engine vehicles, resulting in safety issues for pedestrians and cyclists due to the lack of engine noise to warn them of an oncoming electric or hybrid vehicle. However, the driver behavior characteristics have also been considered in many studies, and the high end-prices of electric vehicles indicate that electric vehicle drivers tend to have a higher prosperity index and are more likely to receive a better education, making them more alert while driving and more likely to obey traffic rules. In this paper, the positive and negative factors associated with electric vehicle adoption and the subsequent effects on pedestrian traffic safety are investigated using an agent-based modeling approach, in which a traffic micro-simulation of a real intersection is simulated in 3D using AnyLogic software. First, the interacting agents and dynamic parameters are defined in the agent-based model. Next, a 3D intersection environment is created to integrate the agent-based model into a visual simulation, where the simulation records the number of near-crashes occurring in certain pedestrian crossings throughout the virtual time duration of a year. A sensitivity analysis is also carried out with 9000 subsequent simulations performed in a supercomputer to account for the variation in dynamic parameters (ambient sound level, vehicle sound level, and ambient illumination). According to the analysis, electric vehicles have a 30% higher pedestrian traffic safety risk than internal combustion engine vehicles under high ambient sound levels. At low ambient sound levels, however, electric vehicles have only a 10% higher safety risk for pedestrians. Low levels of ambient illumination also increase the number of pedestrians involved in near-crashes for both electric vehicles and combustion engine vehicles.  相似文献   

9.
In India pedestrians usually cross the road at mid-block crosswalks due to ease of access to their destination or the development of adjacent land use types such as shopping, business areas, school and residential areas. The behaviour of pedestrian will change with respect to different land use type and this change in behaviour of pedestrian further reflects change in perceived level of service (LOS). So, it is important to evaluate the quality of service of such crossing facilities with respect to different land-use type under mixed traffic conditions. In this framework, pedestrian perceived LOS were collected with respect to different land-use type such as shopping, residential and business areas. The ordered probit (OP) model was developed by using NLOGIT software package, with number of vehicles encountered, road crossing difficulty as well as safety considered as primary factors along with pedestrian individual factors (gender and age), land-use type and roadway geometry. From the model results, it has been concluded that perceived safety, crossing difficulty, land-use condition, number of vehicles encountered, median width and number of lanes have significant effect on pedestrian perceived LOS at unprotected (un-signalized) mid-block crosswalks in mixed traffic scenario. The inferences of these results highlights the importance of land use planning in designing a new set of pedestrian access facilities for unprotected mid-block crosswalks under mixed traffic conditions. Also the study results would be useful for evaluating pedestrian accessibility taking into account different land-use type and planning required degree of segregation with vehicular movement at unprotected mid-block crosswalk locations.  相似文献   

10.
At urban intersections, conflicts between right-turn vehicles and through non-motorized vehicles are a critical cause of traffic congestion and safety challenges. Based on the fact that in different countries there is no strict priority in conflicts between motorized and non-motorized vehicles, this study focused on analysis of the inherent mechanism of this universal phenomenon. By the analogy of a force model for moving vehicles, this paper developed a micro driving force model, including the safety driving force and efficiency driving force, for right-turn drivers which constitute the dominant party during the non-strict priority crossing process. We further demonstrate that the strict priority crossing behavior is a special case of the proposed driving force model. All the parameters used in this model were calibrated through field data collected at twelve signalized intersection sites in Shanghai. Model validation results proved the accuracy and reliability of the proposed driving force model. The model was further proved that it can be used for right-turn vehicle's average crossing speed prediction. The sensitivity analysis identified the influence of vehicle type, non-motorized traffic flow rate, and non-motorized traffic speed on the average speed, and offered support for the rationality of the non-strict priority.  相似文献   

11.
Abstract

Each year more than 1000 pedestrians are injured in accidents on pedestrian crossings in Switzerland. The accidents often occur in darkness, twilight or poor visibility during rain at locations without sufficient public street lighting because vehicle drivers notice the pedestrian crossing too late or overlook it altogether. Pedestrian crossings can be made significantly easier for vehicle drivers to recognize at night and in poor visibility by means of HMB reflectors. When crossing sites are made more conspicuous with high horizontal retro‐reflecting markers, the readiness to stop increases. The reflectors can thus contribute to improving road safety at pedestrian crossings. This new low‐cost measure has a wide range of applications. The new reflector system is currently gaining ground in Switzerland and several other European countries.  相似文献   

12.
This paper examines pedestrian anatomical injuries and crash characteristics in back‐to‐traffic and facing‐traffic crashes. Pedestrian crashes involving pedestrians walking along streets (i.e. with their backs to traffic or facing traffic) have been overlooked in literature. Although this is not the most frequent type of crash, the crash consequence to pedestrians is a safety concern. Combining Taiwan A1A2 police‐reported accident data and data from the National Health Insurance Database from years 2003–2013, this paper examines anatomical injuries and crash characteristics in back‐to‐traffic and facing‐traffic crashes. There were a total of 830 and 2267 pedestrian casualties in back‐to‐traffic and facing‐traffic crashes respectively. The injuries sustained by pedestrians and crash characteristics of these two crash types were compared with those of other crossing types of crashes (nearside crash, nearside dart‐out crash, offside crash, and offside dart‐out crash). Odds of various injuries to body regions were estimated using logistic regressions. Key findings include that the percentage of fatalities in back‐to‐traffic crashes is the highest; logistic models reveal that pedestrians in back‐to‐traffic crashes sustained more head, neck, and spinal injuries than did pedestrians in other crash types, and unlit darkness and non‐built‐up roadways were associated with an increased risk of pedestrian head injuries. Several crash features (e.g. unlit darkness, overtaking manoeuvres, phone use by pedestrians and drivers, and intoxicated drivers) are more frequently evident in back‐to‐traffic crashes than in other types of crashes. The current research suggests that in terms of crash consequence, facing traffic is safer than back to traffic. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Wider deployment of alternative fuel vehicles (AFVs) can help with increasing energy security and transitioning to clean vehicles. Ideally, adopters of AFVs are able to maintain the same level of mobility as users of conventional vehicles while reducing energy use and emissions. Greater knowledge of AFV benefits can support consumers’ vehicle purchase and use choices. The Environmental Protection Agency’s fuel economy ratings are a key source of potential benefits of using AFVs. However, the ratings are based on pre-designed and fixed driving cycles applied in laboratory conditions, neglecting the attributes of drivers and vehicle types. While the EPA ratings using pre-designed and fixed driving cycles may be unbiased they are not necessarily precise, owning to large variations in real-life driving. Thus, to better predict fuel economy for individual consumers targeting specific types of vehicles, it is important to find driving cycles that can better represent consumers’ real-world driving practices instead of using pre-designed standard driving cycles. This paper presents a methodology for customizing driving cycles to provide convincing fuel economy predictions that are based on drivers’ characteristics and contemporary real-world driving, along with validation efforts. The methodology takes into account current micro-driving practices in terms of maintaining speed, acceleration, braking, idling, etc., on trips. Specifically, using a large-scale driving data collected by in-vehicle Global Positioning System as part of a travel survey, a micro-trips (building block) library for California drivers is created using 54 million seconds of vehicle trajectories on more than 60,000 trips, made by 3000 drivers. To generate customized driving cycles, a new tool, known as Case Based System for Driving Cycle Design, is developed. These customized cycles can predict fuel economy more precisely for conventional vehicles vis-à-vis AFVs. This is based on a consumer’s similarity in terms of their own and geographical characteristics, with a sample of micro-trips from the case library. The AFV driving cycles, created from real-world driving data, show significant differences from conventional driving cycles currently in use. This further highlights the need to enhance current fuel economy estimations by using customized driving cycles, helping consumers make more informed vehicle purchase and use decisions.  相似文献   

14.
In many cases, pedestrian crossing demands are distributed discretely along an arterial segment. Demand origins, destinations and crosswalks comprise a pedestrian crossing network. An integrated model for optimizing the quantity, locations and signal settings of mid-block crosswalks simultaneously is proposed to best trade-off the operational performances between pedestrians and vehicles. Pedestrian behavior of choosing crosswalks is captured under a discrete demand distribution. Detour distance and delay at signalized crosswalks are formulated as a measure of pedestrian crossing cost. Maximum bandwidths are modeled in analytical expressions as a measure of vehicular cost. To solve the proposed model, the Non-dominated Sorting Genetic Algorithm II (NSGA II) based algorithm is designed and employed to obtain the Pareto frontier efficiently. From the numerical study, it is found that there exists an optimal number of mid-block crosswalks. Excess available crosswalks may make no contributions to improvement in pedestrian cost when the constraint of the minimum interval between crosswalks and vehicular cost are taken into account. Two-stage crosswalks are more favorable than one-stage ones for the benefits of both pedestrian and vehicles. The study results show promising properties of the proposed method to assist transportation engineers in properly designing mid-block crosswalks along a road segment.  相似文献   

15.
Abstract

This paper investigates pedestrians' traffic gap acceptance for mid-block street crossing in urban areas. A field survey was carried out at an uncontrolled mid-block location in Athens, Greece. Pedestrians' decisions and traffic conditions were videotaped in terms of the size of traffic gaps rejected or accepted, waiting times and crossing attempts and vehicle speeds. A lognormal regression model was developed to examine pedestrian gap acceptance. It was found that gap acceptance was better explained by the distance from the incoming vehicle, rather than its speed. Other significant effects included illegal parking, presence of other pedestrians and incoming vehicles’ size. A binary logistic regression model was developed to examine the effect of traffic gaps and other parameters on pedestrians' decisions to cross the street or not. The results reveal that this decision is affected by the distance from the incoming vehicles and the waiting times of pedestrians.  相似文献   

16.
As of November 2008, the number of cell phone subscribers in the US exceeded 267 million, nearly three times more than the 97 million subscribers in June 2000. This rapid growth in cell phone use has led to concerns regarding their impact on driver performance and road safety. Numerous legislative efforts are under way to restrict hand-held cell phone use while driving. Since 1999, every state has considered such legislation, but few have passed primary enforcement laws. As of 2008, six states, the District of Columbia (DC), and the Virgin Islands have laws banning the use of hand-held cell phones while driving. A review of the literature suggests that in laboratory settings, hand-held cell phone use impairs driver performance by increasing tension, delaying reaction time, and decreasing awareness. However, there exists insufficient evidence to prove that hand-held cell phone use increases automobile-accident-risk. In contrast to other research in this area that uses questionnaires, tests, and simulators, this study analyzes the impact of hand-held cell phone use on driving safety based on historical automobile-accident-risk-related data and statistics, which would be of interest to transportation policy-makers. To this end, a pre-law and post-law comparison of automobile accident rate measures provides one way to assess the effect of hand-held cell phone bans on driving safety; this paper provides such an analysis using public domain data sources. A discussion of what additional data are required to build convincing arguments in support of or against legislation is also provided.  相似文献   

17.
Driven by sustainability objectives, Australia like many nations in the developed world, is considering the option of battery electric vehicles (BEVs) as an alternative to conventional internal combustion engine vehicles (ICEVs). In addition to issues of capital and running costs, crucial questions remain over the specifications of such vehicles, particularly the required driving range, recharge time, re-charging infrastructure, performance, and other attributes that will be of importance to consumers. With this in mind, this paper assesses (hypothetically) the extent to which current car travel needs could be met by BEVs for a sample of motorists in Sydney assuming a home-based charging set-up, which is likely to be the primary option for early adopters of the technology. The approach uses five weeks of driving data recorded by GPS technology and builds up home-home tours to assess the distances between (in effect) charging possibilities. An energy consumption model based on characteristics of the vehicle, and the speeds recorded by the GPS is adapted to determine the charge used, while a battery recharge function is used to determine charging times based on the current battery level. Among the most pertinent findings are that over the five weeks, (i) BEVs with a range as low as 60 km and a simple home-charge set-up would be able to accommodate well over 90% of day-to-day driving, (ii) however the incidence of tours requiring out-of-home charging increases markedly for vehicles below 24 kWh (170 km range), (iii) recharge time in itself has little impact on the feasibility of BEVs because vehicles spend the majority of their time parked and (iv) effective range can be dramatically impacted by both how a vehicle is driven and use of electrical auxiliaries, and (v) while unsuitable for long, high-speed journeys without some external re-charging options, BEVs appear particularly suited for the majority of day-to-day city driving in big cities where average journey speeds of 34 km/h are close to optimal in terms of maximising vehicle range. The paper has implications for both policy-makers and auto manufacturers in breaking down some of the (perceived) barriers to greater uptake of BEVs in the future.  相似文献   

18.
The current study contributes to the existing injury severity modeling literature by developing a multivariate probit model of injury severity and seat belt use decisions of both drivers involved in two-vehicle crashes. The modeling approach enables the joint modeling of the injury severity of multiple individuals involved in a crash, while also recognizing the endogeneity of seat belt use in predicting injury severity levels as well as accommodating unobserved heterogeneity in the effects of variables. The proposed model is applied to analyze the injury severity of drivers involved in two-vehicle road crashes in Denmark.The empirical analysis provides strong support for the notion that people offset the restraint benefits of seat belt use by driving more aggressively. Also, men and those individuals driving heavy vehicles have a lower injury risk than women and those driving lighter vehicles, respectively. At the same time, men and individuals driving heavy vehicles pose more of a danger to other drivers on the roadway when involved in a crash. Other important determinants of injury severity include speed limit on roadways where crash occurs, the presence (or absence) of center dividers (median barriers), and whether the crash involves a head-on collision. These and other results are discussed, along with implications for countermeasures to reduce injury severities in crashes. The analysis also underscores the importance of considering injury severity at a crash level, while accommodating seat belt endogeneity effects and unobserved heterogeneity effects.  相似文献   

19.
This paper proposes a rule-based neural network model to simulate driver behavior in terms of longitudinal and lateral actions in two driving situations, namely car-following situation and safety critical events. A fuzzy rule based neural network is constructed to obtain driver individual driving rules from their vehicle trajectory data. A machine learning method reinforcement learning is used to train the neural network such that the neural network can mimic driving behavior of individual drivers. Vehicle actions by neural network are compared to actions from naturalistic data. Furthermore, this paper applies the proposed method to analyze the heterogeneities of driving behavior from different drivers’ data.Driving data in the two driving situations are extracted from Naturalistic Truck Driving Study and Naturalistic Car Driving Study databases provided by the Virginia Tech Transportation Institute according to pre-defined criteria. Driving actions were recorded in instrumented vehicles that have been equipped with specialized sensing, processing, and recording equipment.  相似文献   

20.
Greater adoption and use of alternative fuel vehicles (AFVs) can be environmentally beneficial and reduce dependence on gasoline. The use of AFVs vis-à-vis conventional gasoline vehicles is not well understood, especially when it comes to travel choices and short-term driving decisions. Using data that contains a sufficiently large number of early AFV adopters (who have overcome obstacles to adoption), this study explores differences in use of AFVs and conventional gasoline vehicles (and hybrid vehicles). The study analyzes large-scale behavioral data integrated with sensor data from global positioning system devices, representing advances in large-scale data analytics. Specifically, it makes sense of data containing 54,043,889 s of speed observations, and 65,652 trips made by 2908 drivers in 5 regions of California. The study answers important research questions about AFV use patterns (e.g., trip frequency and daily vehicle miles traveled) and driving practices. Driving volatility, as one measure of driving practice, is used as a key metric in this study to capture acceleration, and vehicular jerk decisions that exceed certain thresholds during a trip. The results show that AFVs cannot be viewed as monolithic; there are important differences within AFV use, i.e., between plug-in hybrids, battery electric, or compressed natural gas vehicles. Multi-level models are particularly appropriate for analysis, given that the data are nested, i.e., multiple trips are made by different drivers who reside in various regions. Using such models, the study also found that driving volatility varies significantly between trips, driver groups, and regions in California. Some alternative fuel vehicles are associated with calmer driving compared with conventional vehicles. The implications of the results for safety, informed consumer choices and large-scale data analytics are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号