首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With the ubiquitous nature of mobile sensing technologies, privacy issues are becoming increasingly important, and need to be carefully addressed. Data needs for transportation modeling and privacy protection should be deliberately balanced for different applications. This paper focuses on developing privacy mechanisms that would simultaneously satisfy privacy protection and data needs for fine-grained urban traffic modeling applications using mobile sensors. To accomplish this, a virtual trip lines (VTLs) zone-based system and related filtering approaches are developed. Traffic-knowledge-based adversary models are proposed and tested to evaluate the effectiveness of such a privacy protection system by making privacy attacks. The results show that in addition to ensuring an acceptable level of privacy, the released datasets from the privacy-enhancing system can also be applied to urban traffic modeling with satisfactory results. Albeit application-specific, such a “Privacy-by-Design” approach would hopefully shed some light on other transportation applications using mobile sensors.  相似文献   

2.
3.
Safe and comfortable walking is essential for pedestrian movement in modern urban transportation systems. Since pedestrian traffic cannot be restricted in some specified streets, some measures for pedestrians have to be taken everywhere in urban areas. This research describes a way to evaluate ordinary sidewalks, and two different methods are proposed. One is an evaluation based on pedestrian behaviour and the other is an evaluation based on pedestrian opinion. Using the indices of pedestrian density and sidewalk width, we can estimate the level of service of sidewalk usage. But generally speaking, since it is not often that a sidewalk is insufficient to deal with pedestrian flow, another approach is necessary for its evaluation, that is, pedestrian awareness of sidewalks must be taken into account. The former method is recommended for all sidewalks, especially with comparatively heavy pedestrian traffic, and the latter method is recommended for ones with light pedestrian traffic.  相似文献   

4.
The paths followed by vehicles in urban areas are densely interwoven, and some of the accidents and congestion that occur in city centres can be attributed to the ‘conflicts’ that arise where these paths intersect. Hence, it is desirable to encourage traffic patterns in which the frequency and severity of conflicts are minimised. At present, neither signal optimisation programs nor traffic simulation programs allow the user to experiment freely with different combinations of one-way streets and turn restrictions, which might otherwise help to disentangle conflicting movements. There is no accepted formula or philosophy for organising traffic into a coherent spatial pattern. The aim of this paper is to consider some idealised networks and circulation systems that have simple geometrical configurations, and to identify those systems that are relatively efficient in terms of path crossings, as compared with a theoretical yardstick derived from graph theory. The results provide some pointers towards a general strategy for efficient traffic circulation in urban areas.  相似文献   

5.
Principal component analysis (PCA) is used to analyze one-year traffic, emission and meteorological data for an urban intersection in the Delhi. The 1997 data include meteorological, traffic and emission variables. In urban intersections the complexities of site, traffic and meteorological characteristic may result in a high cross correlation among the variables. In such situations, PCA can provide an independent linear combination of the variables. Here it is used to analyze 1, 8 and 24 h average emission, traffic and meteorological data. It shows that four principal components for the 24 h average have the highest loadings for traffic and emission variables with a strong correlation between them. PC loadings for the 1 and 8 h data indicate the least variation among them.  相似文献   

6.
The integration of internet and mobile phones has opened the door to a new wave of utilizing private vehicles as probes not only for performance evaluation but for traffic control as well, gradually replacing the role of traffic surveillance systems as the dominant source of traffic data. To prepare for such a paradigm shift, one needs to overcome some key institutional barriers, in particular, the privacy issue. A Highway Voting System (HVS) is proposed to address this issue in which drivers provide link- and/or path-based vehicle data to the traffic management system in the form of “votes” in order to receive favorable service from traffic control. The proposed HVS offers a platform that links data from individual vehicles directly with traffic control. In the system, traffic control responds to voting vehicles in a way similar to the current system responding to prioritized vehicles and providing the requested services accordingly. We show in the paper that the proposed “voting” system can effectively resolve the privacy issue which often hampers traffic engineers from getting detailed data from drivers. Strategies to entice drivers into “voting” so as to increase the market penetration level under all traffic conditions are discussed. Though the focus of the paper is on addressing the institutional issues associated with data acquisition from individual vehicles, other research topics associated with the proposed system are identified. Two examples are given to demonstrate the impact of the proposed system on algorithm development and traffic control.  相似文献   

7.
Increased speed variation on urban arterials is associated with reductions in both operational performance and safety. Traffic flow, mean speed, traffic control parameters and geometric design features are known to affect speed variation. An exploratory study of the relationships among these variables could provide a foundation for improving the operational and safety performance of urban arterials, however, such a study has been hampered by problems in measuring speeds. The measurement of speed has traditionally been accomplished using spot speed collection methods such as radar, laser and loop detectors. These methods can cover only limited locations, and consequently are not able to capture speed distributions along an entire network, or even throughout any single road segment. In Shanghai, it is possible to acquire the speed distribution of any roadway segment, over any period of interest, by capturing data from Shanghai’s 50,000+ taxis equipped with Global Positional Systems (GPS). These data, hereafter called Floating Car Data, were used to calculate mean speed and speed variation on 234 road segments from eight urban arterials in downtown Shanghai. Hierarchical models with random variables were developed to account for spatial correlations among segments within each arterial and heterogeneities among arterials. Considering that traffic demand changes throughout the day, AM peak, Noon off-peak, and PM peak hours were studied separately. Results showed that increases in number of lanes and number of access points, the presence of bus stops and increases in mean speed were all associated with increased speed variation, and that increases in traffic volume and traffic signal green times were associated with reduced speed variation. These findings can be used by engineers to minimize speed differences during the road network planning stage and continuing through the traffic management phase.  相似文献   

8.
ABSTRACT

The quality of traffic information has become one of the most important factors that can affect the distribution of urban and highway traffic flow by changing the travel route, transportation mode, and travel time of travelers and trips. Past research has revealed traveler behavior when traffic information is provided. This paper summarizes the related study achievements from a survey conducted in the Beijing area with a specially designed questionnaire considering traffic conditions and the provision of traffic information services. With the survey data, a Logit model is estimated, and the results indicate that travel time can be considered the most significant factor that affects highway travel mode choice between private vehicles and public transit, whereas trip purpose is the least significant factor for private vehicle usage for both urban and highway travel.  相似文献   

9.
快速城市化致使城市交通量急剧增长,交通拥堵问题日益严重。受社会经济等条件限制,已建的成城区难以进行大规模的改扩工程,交通系统的深化急需跟上城市更新的步伐[1]。本文以广州市天河区天园街道片区为研究对象,利用互联网电子地图,对该片区周边四条主要交通性道路高峰时段拥堵情况进行实时监测。通过为时一个月的监测,了解到在拥堵高峰时段四条交通性道路规模所能承载的交通量远远低于实际承载的交通通行量。结合实地调研,运用交通微循环理论,提出构建一个合理的交通微循环道路网络方案,即开放片区内部路网增强城市交通的毛细血管,增强四条主干道之间的联系实现交通分流。  相似文献   

10.
This paper proposes a non-anticipative, adaptive, decentralized strategy for managing evacuation networks. The strategy is non-anticipative because it does not rely on demand forecasts, adaptive because it uses real-time traffic information, and decentralized because all the information is available locally. It can be used with a failed communication network.The strategy pertains to networks in which no links backtrack in the direction of increased risk. For these types of networks, no other strategy exists that can evacuate more people in any given time, or finish the evacuation in less time. The strategy is also shown to be socially fair, in the sense that the time needed to evacuate all the people exceeding any risk level is, both, the least possible, and the same as if less-at-risk individuals did not participate in the evacuation. The strategy can be proven optimal even when backflows happen due to driver gaming.  相似文献   

11.
The urban parking and the urban traffic systems are essential components of the overall urban transportation structure. The short-term interactions between these two systems can be highly significant and influential to their individual performance. The urban parking system, for example, can affect the searching-for-parking traffic, influencing not only overall travel speeds in the network (traffic performance), but also total driven distance (environmental conditions). In turn, the traffic performance can also affect the time drivers spend searching for parking, and ultimately, parking usage. In this study, we propose a methodology to model macroscopically such interactions and evaluate their effects on urban congestion.The model is built on a matrix describing how, over time, vehicles in an urban area transition from one parking-related state to another. With this model it is possible to estimate, based on the traffic and parking demand as well as the parking supply, the amount of vehicles searching for parking, the amount of vehicles driving on the network but not searching for parking, and the amount of vehicles parked at any given time. More importantly, it is also possible to estimate the total (or average) time spent and distance driven within each of these states. Based on that, the model can be used to design and evaluate different parking policies, to improve (or optimize) the performance of both systems.A simple numerical example is provided to show possible applications of this type. Parking policies such as increasing parking supply or shortening the maximum parking duration allowed (i.e., time controls) are tested, and their effects on traffic are estimated. The preliminary results show that time control policies can alleviate the parking-caused traffic issues without the need for providing additional parking facilities. Results also show that parking policies that intend to reduce traffic delay may, at the same time, increase the driven distance and cause negative externalities. Hence, caution must be exercised and multiple traffic metrics should be evaluated before selecting these policies.Overall, this paper shows how the system dynamics of urban traffic, based on its parking-related-states, can be used to efficiently evaluate the urban traffic and parking systems macroscopically. The proposed model can be used to estimate both, how parking availability can affect traffic performance (e.g., average time searching for parking, number of cars searching for parking); and how different traffic conditions (e.g., travel speed, density in the system) can affect drivers ability to find parking. Moreover, the proposed model can be used to study multiple strategies or scenarios for traffic operations and control, transportation planning, land use planning, or parking management and operations.  相似文献   

12.
This paper presents a novel methodology to control urban traffic noise under the constraint of environmental capacity. Considering the upper limits of noise control zones as the major bottleneck to control the maximum traffic flow is a new idea. The urban road network traffic is the mutual or joint behavior of public self-selection and management decisions, so is a typical double decision optimization problem.The proposed methodology incorporates theoretically model specifications. Traffic noise calculation model and traffic assignment model for O–D matrix are integrated based on bi-level programming method which follows an iterated process to obtain the optimal solution. The upper level resolves the question of how to sustain the maximum traffic flow with noise capacity threshold in a feasible road network. The user equilibrium method is adopted in the lower layer to resolve the O–D traffic assignment.The methodology has been applied to study area of QingDao, China. In this illustrative case, the noise pollution level values of optimal solution could satisfy the urban environmental noise capacity constraints. Moreover, the optimal solution was intelligently adjusted rather than simply reducing the value below a certain threshold. The results indicate that the proposed methodology is feasible and effective, and it can provide a reference for a sustainable development and noise control management of the urban traffic.  相似文献   

13.
Energy costs account for an important share of the total costs of urban and suburban bus operators. The purpose of this paper is to expand empirical research on bus transit operation costs and identify the key factors that influence bus energy efficiency of the overall bus fleet of one operator and aid to the management of its resources.We estimate a set of multivariate regression models, using cross-section dataset of 488 bus drivers operating over 92 days in 2010, in 87 routes with different bus typologies, of a transit company operating in the Lisbon’s Metropolitan Area (LMA), Rodoviária de Lisboa, S.A.Our results confirm the existence of influential variables regarding energy efficiency and these are mainly: vehicle type, commercial speed, road grades over 5% and bus routes; and to a lesser extent driving events such as: sudden longitudinal decelerations and excessive engine rotation. The methodology proved to be useful for the bus operator as a decision-support tool for efficiency optimization purpose at the company level.  相似文献   

14.
The rapid-growth of smartphones with embedded navigation systems such as GPS modules provides new ways of monitoring traffic. These devices can register and send a great amount of traffic related data, which can be used for traffic state estimation. In such a case, the amount of data collected depends on two variables: the penetration rate of devices in traffic flow (P) and their data sampling frequency (z). Referring to data composition as the way certain number of observations is collected, in terms of P and z, we need to understand the relation between the amount and composition of data collected, and the accuracy achieved in traffic state estimation. This was accomplished through an in-depth analysis of two datasets of vehicle trajectories on freeways. The first dataset consists of trajectories over a real freeway, while the second dataset is obtained through microsimulation. Hypothetical scenarios of data sent by equipped vehicles were created, based on the composition of data collected. Different values of P and z were used, and each unique combination defined a specific scenario. Traffic states were estimated through two simple methods, and a more advanced one that incorporates traffic flow theory. A measure to quantify data to be collected was proposed, based on travel time, number of vehicles, penetration rate and sampling frequency. The error was below 6% for every scenario in each dataset. Also, increasing data reduced variability in data count estimation. The performance of the different estimation methods varied through each dataset and scenario. Since the same number of observations can be gathered with different combinations of P and z, the effect of data composition was analyzed (a trade-off between penetration rate and sampling frequency). Different situations were found. In some, an increase in penetration rate is more effective to reduce estimation error than an increase in sampling frequency, considering an equal increase in observations. In other areas, the opposite relationship was found. Between these areas, an indifference curve was found. In fact, this curve is the solution to the optimization problem of minimizing the error given any fixed number of observations. As a general result, increasing sampling frequency (penetration rate) is more beneficial when the current sampling frequency (penetration rate) is low, independent of the penetration rate (sampling frequency).  相似文献   

15.
刘跃军  顾涛  王晴 《综合运输》2021,(3):119-124
机动车驾驶员的素质能够对城市交通运行产生重大影响,良好的技术水平和高尚道德素质的驾驶员,对于保证城市交通安全运行和人民生命财产的安全至关重要。通过开展驾驶员培训市场需求总量的预测研究,能够有效引导培训市场的合理竞争,提升驾驶员培训行业的高质量发展。本文系统分析了驾驶员培训市场需求预测的方法,以北京驾培市场为实例,基于城市新总规,综合考虑经济社会发展、城市人口变化、城市机动车调控和驾驶证饱和率等多种因素,预测未来培训市场需求情况。根据预测结果和市场培训能力对比,提出了针对行业总量发展的对策建议,也能为国内城市进行驾培需求预测研究和行业发展提供参考。  相似文献   

16.
Current signal systems for managing road traffic in many urban areas around the world lack a coordinated approach to detecting the spatial and temporal evolution of congestion across control regions within city networks. This severely inhibits these systems’ ability to detect reliably, on a strategic level, the onset of congestion and implement effective preventative action. As traffic is a time-dependent and non-linear system, Chaos Theory is a prime candidate for application to Urban Traffic Control (UTC) to improve congestion and pollution management. Previous applications have been restricted to relatively uncomplicated motorway and inter-urban networks, arguably where the associated problems of congestion and vehicle emissions are less severe, due to a general unavailability of high-resolution temporal and spatial data that preserve the variability in short-term traffic patterns required for Chaos Theory to work to its full potential. This paper argues that this restriction can now be overcome due to the emergence of new sources of high-resolution data and large data storage capabilities. Consequently, this opens up the real possibility for a new generation of UTC systems that are better able to detect the dynamic states of traffic and therefore more effectively prevent the onset of traffic congestion in urban areas worldwide.  相似文献   

17.
Evaluating locational accessibility to the US air transportation system   总被引:2,自引:0,他引:2  
Although there are hundreds of airports that support commercial air passenger traffic in the United States (US), not all areas are equivalently served by the commercial air transportation system. Locations in the US differ with respect to their level of access to the commercial air network and their overall accessibility within the system. Given the complexity of the domestic commercial air passenger network and supporting infrastructure, past research has only been able to provide a limited assessment of locational accessibility within the United States. To address these complexities, this paper proposes a new metric that incorporates measures of access to air transport as well as accessibility within air transportation networks. Using a comprehensive dataset on scheduled airline service, the developed approach is then applied to the US domestic commercial passenger air transportation network to explore geographic differentials in accessibility. Results suggest marked differences between core-based statistical areas throughout the US.  相似文献   

18.
License plate recognition (LPR) data are emerging data sources that provide rich information in estimating the traffic conditions of urban arterials. While large-scale LPR system is not common in US, last few years have seen rapid developments and implementations in many other parts of world (e.g. China, Thailand and Middle East). Due to privacy issues, LPR data are seldom available to research communities. However, when available, this data source can be valuable in estimating real-time operational metrics in transportation systems. This paper proposes a lane-based real-time queue length estimation model using the license plate recognition (LPR) data. In the model, an interpolation method based on Gaussian process is developed to reconstruct the equivalent cumulative arrival–departure curve for each lane. The missing information for unrecognized or unmatched vehicles is obtained from the reconstructed arrival curve. With the complete arrival and departure information, a car-following based simulation scheme is applied to estimate the real-time queue length for each lane. The proposed model is validated using ground truth information of the maximum queue lengths from the city of Langfang in China. The results show that the model can capture the variations in queue lengths in the ground truth data, and the maximum queue length for each signal cycle can be estimated with a reasonable accuracy. The estimated queue length information using the proposed model can serve as a useful performance metric for various real-time traffic control applications.  相似文献   

19.
Using bicycles as a commuting mode has proven to be beneficial to both urban traffic conditions and travelers’ health. In order to efficiently design facilities and policies that will stimulate bicycle use, it is necessary to first understand people’s attitudes towards bicycle use, and the factors that may influence their preferences. Such an understanding will enable reliable predictions of bicycle use willingness level, based on which cycling facility construction can be reasonably prioritized.As people often have different perceptions on exercising, green transportation, and traffic conditions, effects of potentially influencing factors on people’s willingness of using bicycles tend to be highly heterogeneous. This paper uses a random parameter ordered probit model to analyze how travelers’ willingness of using bicycles is influenced by various socio-economic factors in Belo Horizonte City, Brazil, with the consideration of individual heterogeneity. The data was collected through the 2010 bicycle use survey in Belo Horizonte City. Results show that, first, the willingness of using bicycle is favored by middle income class household, and negatively related with commuting time. Second, people who rent apartments tend to be more willing to use bicycles. Third, if a person is currently walking a long time to work, he/she would be most willing to commute with a bicycle in the future. Those currently commuting a relatively short distance by motorcycle and bus follow this group in terms of willingness to commute by bicycle in the future. Car users seem to be difficult to convert to bicycle users. Moreover, the estimation shows clear evidence that significant individual heterogeneity indeed exists, especially for education level, necessitating the consideration of such an effect. With the calibrated model, residents’ willingness of using bicycle commuting is then estimated for the entire Belo Horizonte City using the 2010 Census and the 2012 O/D survey data. The results are cross validated using the bicycle path preference information, also obtained from the 2010 bicycle use survey.  相似文献   

20.
The rapid development and deployment of Intelligent Transportation Systems (ITS) that utilize data on the movement of vehicles can greatly benefit transportation network operations and safety, but may test the limits of personal privacy. In this paper we survey the current state of legal and industry-led privacy protections related to ITS and find that the lack of existing standards, rules, and laws governing the collection, storage, and use of such information could both raise troubling privacy questions and potentially hinder implementation of useful ITS technologies. We then offer practical recommendations for addressing ITS-related privacy concerns though both privacy-by-design solutions (that build privacy protections into data collection systems), and privacy-by-policy solutions (that provide guidelines for data collection and treatment) including limiting the scope of data collection and use, assuring confidentially of data storage, and other ways to build trust and foster consumer consent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号