首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Short-term traffic flow prediction is an integral part in most of Intelligent Transportation Systems (ITS) research and applications. Many researchers have already developed various methods that predict the future traffic condition from the historical database. Nevertheless, there has not been sufficient effort made to study how to identify and utilize the different factors that affect the traffic flow. In order to improve the performance of short-term traffic flow prediction, it is necessary to consider sufficient information related to the road section to be predicted. In this paper, we propose a method of constructing traffic state vectors by using mutual information (MI). First, the variables with different time delays are generated from the historical traffic time series, and the spatio-temporal correlations between the road sections in urban road network are evaluated by the MI. Then, the variables with the highest correlation related to the target traffic flow are selected by using a greedy search algorithm to construct the traffic state vector. The K-Nearest Neighbor (KNN) model is adapted for the application of the proposed state vector. Experimental results on real-world traffic data show that the proposed method of constructing traffic state vector provides good prediction accuracy in short-term traffic prediction.  相似文献   

2.
In this paper a new traffic flow model for congested arterial networks, named shockwave profile model (SPM), is presented. Taking advantage of the fact that traffic states within a congested link can be simplified as free-flow, saturated, and jammed conditions, SPM simulates traffic dynamics by analytically deriving the trajectories of four major shockwaves: queuing, discharge, departure, and compression waves. Unlike conventional macroscopic models, in which space is often discretized into small cells for numerical solutions, SPM treats each homogeneous road segment with constant capacity as a section; and the queuing dynamics within each section are described by tracing the shockwave fronts. SPM is particularly suitable for simulating traffic flow on congested signalized arterials especially with queue spillover problems, where the steady-state periodic pattern of queue build-up and dissipation process may break down. Depending on when and where spillover occurs along a signalized arterial, a large number of queuing patterns may be possible. Therefore it becomes difficult to apply the conventional approach directly to track shockwave fronts. To overcome this difficulty, a novel approach is proposed as part of the SPM, in which queue spillover is treated as either extending a red phase or creating new smaller cycles, so that the analytical solutions for tracing the shockwave fronts can be easily applied. Since only the essential features of arterial traffic flow, i.e., queue build-up and dissipation, are considered, SPM significantly reduces the computational load and improves the numerical efficiency. We further validated SPM using real-world traffic signal data collected from a major arterial in the Twin Cities. The results clearly demonstrate the effectiveness and accuracy of the model. We expect that in the future this model can be applied in a number of real-time applications such as arterial performance prediction and signal optimization.  相似文献   

3.
A new traffic noise prediction approach based on a probability distribution model of vehicle noise emissions and achieved by Monte Carlo simulation is proposed in this paper. The probability distributions of the noise emissions of three types of vehicles are obtained using an experimental method. On this basis, a new probability statistical model for traffic noise prediction on free flow roads and control flow roads is established. The accuracy of the probability statistical model is verified by means of a comparison with the measured data, which has shown that the calculated results of Leq, L10, L50, L90, and the probability distribution of noise level occurrence agree well with the measurements. The results demonstrate that the new method can avoid the complicated process of traffic flow simulation but still maintain high accuracy for the traffic noise prediction.  相似文献   

4.
This paper examines the impact of having cooperative adaptive cruise control (CACC) embedded vehicles on traffic flow characteristics of a multilane highway system. The study identifies how CACC vehicles affect the dynamics of traffic flow on a complex network and reduce traffic congestion resulting from the acceleration/deceleration of the operating vehicles. An agent-based microscopic traffic simulation model (Flexible Agent-based Simulator of Traffic) is designed specifically to examine the impact of these intelligent vehicles on traffic flow. The flow rate of cars, the travel time spent, and other metrics indicating the evolution of traffic congestion throughout the lifecycle of the model are analyzed. Different CACC penetration levels are studied. The results indicate a better traffic flow performance and higher capacity in the case of CACC penetration compared to the scenario without CACC-embedded vehicles.  相似文献   

5.
The kinetic theory for traffic flow equations can be approached using the Grad’s method. This method, which is derived from the kinetic gas theory, was developed for the Paveri-Fontana equation when a special desired velocity model is assumed. A closure relation for the set of macroscopic equations is found when the density, the average velocity and the velocity variance are the relevant variables chosen to describe the system. Simulation results are also shown and a qualitative comparison with other models in the literature is presented.  相似文献   

6.
Deep neural networks (DNNs) have recently demonstrated the capability to predict traffic flow with big data. While existing DNN models can provide better performance than shallow models, it is still an open issue of making full use of spatial-temporal characteristics of the traffic flow to improve their performance. In addition, our understanding of them on traffic data remains limited. This paper proposes a DNN based traffic flow prediction model (DNN-BTF) to improve the prediction accuracy. The DNN-BTF model makes full use of weekly/daily periodicity and spatial-temporal characteristics of traffic flow. Inspired by recent work in machine learning, an attention based model was introduced that automatically learns to determine the importance of past traffic flow. The convolutional neural network was also used to mine the spatial features and the recurrent neural network to mine the temporal features of traffic flow. We also showed through visualization how DNN-BTF model understands traffic flow data and presents a challenge to conventional thinking about neural networks in the transportation field that neural networks is purely a “black-box” model. Data from open-access database PeMS was used to validate the proposed DNN-BTF model on a long-term horizon prediction task. Experimental results demonstrated that our method outperforms the state-of-the-art approaches.  相似文献   

7.
Outliers in traffic flow series represent uncommon events occurring in the roadway systems and outlier detection and investigation will help to unravel the mechanism of such events. However, studies on outlier detection and investigations are fairly limited in transportation field where a vast volume of traffic condition data has been collected from traffic monitoring devices installed in many roadway systems. Based on an online algorithm that has the ability of jointly predict the level and the conditional variance of the traffic flow series, a real time outlier detection method is proposed and implemented. Using real world data collected from four regions in both the United States and the United Kingdom, it was found that outliers can be detected using the proposed detection strategy. In addition, through a comparative experimental study, it was shown that the information contained in the outliers should be assimilated into the forecasting system to enhance its ability of adapting to the changing patterns of the traffic flow series. Moreover, the investigation into the effects of outliers on the forecasting system structure showed a significant connection between the outliers and the forecasting system parameters changes. General conclusions are provided concerning the analyses with future work recommended to investigate the underlying outlier generating mechanism and outlier treatment strategy in transportation applications.  相似文献   

8.
To connect microscopic driving behaviors with the macro-correspondence (i.e., the fundamental diagram), this study proposes a flexible traffic stream model, which is derived from a novel car-following model under steady-state conditions. Its four driving behavior-related parameters, i.e., reaction time, calmness parameter, speed- and spacing-related sensitivities, have an apparent effect in shaping the fundamental diagram. Its boundary conditions and homogenous case are also analyzed in detail and compared with other two models (i.e., Longitudinal Control Model and Intelligent Driver Model). Especially, these model formulations and properties under Lagrangian coordinates provide a new perspective to revisit the traffic flow and complement with those under Eulerian coordinate. One calibration methodology that incorporates the monkey algorithm with dynamic adaptation is employed to calibrate this model, based on real-field data from a wide range of locations. Results show that this model exhibits the well flexibility to fit these traffic data and performs better than other nine models. Finally, a concrete example of transportation application is designed, in which the impact of three critical parameters on vehicle trajectories and shock waves with three representations (i.e., respectively defined in x-t, n-t and x-n coordinates) is tested, and macro- and micro-solutions on shock waves well agree with each other. In summary, this traffic stream model with the advantages of flexibility and efficiency has the good potential in level of service analysis and transportation planning.  相似文献   

9.
智能交通系统是一个高科技集成系统,它综合运用各种高新技术于整个交通管理系统之中,可以系统、全面、高效地提高交通运输的安全性.文章阐述了智能交通系统在交通安全中的作用及在福州市的应用情况,指出了福州市发展智能交通的方向,以提高福州市的交通安全管理水平.  相似文献   

10.
Traffic crashes occurring on freeways/expressways are considered to relate closely to previous traffic conditions, which are time-varying. Meanwhile, most studies use volume/occupancy/speed parameters to predict the likelihood of crashes, which are invalid for roads where the traffic conditions are estimated using speed data extracted from sampled floating cars or smart phones. Therefore, a dynamic Bayesian network (DBN) model of time sequence traffic data has been proposed to investigate the relationship between crash occurrence and dynamic speed condition data. Moreover, the traffic conditions near the crash site were identified as several state combinations according to the level of congestion and included in the DBN model. Based on 551 crashes and corresponding speed information collected on expressways in Shanghai, China, DBN models were built with time series speed condition data and different state combinations. A comparative analysis of the DBN model using flow detector data and a static Bayesian network model was also conducted. The results show that, with only speed condition data and nine traffic state combinations, the DBN model can achieve a crash prediction accuracy of 76.4% with a false alarm rate of 23.7%. In addition, the results of transferability testing imply that the DBN models are applicable to other similar expressways with 67.0% crash prediction accuracy.  相似文献   

11.
Nowadays, new mobility information can be derived from advanced traffic surveillance systems that collect updated traffic measurements, both in fixed locations and over specific corridors or paths. Such recent technological developments point to challenging and promising opportunities that academics and practitioners have only partially explored so far.The paper looks at some of these opportunities within the Dynamic Demand Estimation problem (DDEP). At first, data heterogeneity, accounting for different sets of data providing a wide spatial coverage, has been investigated for the benefit of off-line demand estimation. In an attempt to mimic the current urban networks monitoring, examples of complex real case applications are being reported where route travel times and route choice probabilities from probe vehicles are exploited together with common link traffic measurements.Subsequently, on-line detection of non-recurrent conditions is being recorded, adopting a sequential approach based on an extension of the Kalman Filter theory called Local Ensemble Transformed Kalman Filter (LETKF).Both the off-line and the on-line investigations adopt a simulation approach capable of capturing the highly nonlinear dependence between the travel demand and the traffic measurements through the use of dynamic traffic assignment models. Consequently, the possibility of using collected traffic information is enhanced, thus overcoming most of the limitations of current DDEP approaches found in the literature.  相似文献   

12.
In the field of traffic flow, speed, density, time, and distance are fundamental variables analyzed to predict traffic conditions. Reliable sources of information are gauged using tested mathematical approaches that have been developed. However, a fundamental diagram that could serve as a basis for expression techniques has not been devised. Red–green–blue (RGB) color modeling was used to overcome this limitation in traffic flow. The purpose of this study is to provide a way to understand traffic flow conditions based on features of three traffic flow elements simultaneously. The limitation of three‐dimensional expressions in two‐dimensional paper was extended to multi‐dimensional information. Information on speed, density, and flow were combined into a single RGB color and given the name RGB flow‐density space time‐distance space. This cancels out the effect of each individual's vehicular trajectories and contains five major components of a specific road section. The new gizmo aims to provide information on traffic flow conditions in transition and to stimulate further approaches related to the predictions and understanding of traffic flow. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
In this article, we propose a computational method for solving the Lighthill-Whitham-Richards (LWR) partial differential equation (PDE) semi-analytically for arbitrary piecewise-constant initial and boundary conditions, and for arbitrary concave fundamental diagrams. With these assumptions, we show that the solution to the LWR PDE at any location and time can be computed exactly and semi-analytically for a very low computational cost using the cumulative number of vehicles formulation of the problem. We implement the proposed computational method on a representative traffic flow scenario to illustrate the exactness of the analytical solution. We also show that the proposed scheme can handle more complex scenarios including traffic lights or moving bottlenecks. The computational cost of the method is very favorable, and is compared with existing algorithms. A toolbox implementation available for public download is briefly described, and posted at http://traffic.berkeley.edu/project/downloads/lwrsolver.  相似文献   

14.
Location-based systems can be very helpful to mobile users if they are able to suggest shortest paths to destination taking into account the actual traffic conditions. This would allow to inform the drivers not only about the current shortest paths to destination but also about alternative, timely computed paths to avoid being trapped in the traffic jams signaled by cyber-physical-social systems. To this aim, the paper proposes a set of algorithms that solve very fast the All Pair Shortest Paths problem in both the free flow and congested traffic regimes, for road networks of medium-large size, thus enabling location-based systems to deal with emergencies and critical traffic conditions in city and metropolitan areas, whose transport networks typically range from some hundreds to many thousands of nodes, respectively. The paths to avoid being trapped in the traffic jams are computed by using a simulation of the shockwave propagation, instead of historical data. A parallel version of the algorithms is also proposed to solve the All Pair Shortest Paths problem for metropolitan areas with very large road networks. A time performance analysis of the proposed algorithms for transport networks of various size is carried out.  相似文献   

15.
This paper presents a dynamic network‐based approach for short‐term air traffic flow prediction in en route airspace. A dynamic network characterizing both the topological structure of airspace and the dynamics of air traffic flow is developed, based on which the continuity equation in fluid mechanics is adopted to describe the continuous behaviour of the en route traffic. Building on the network‐based continuity equation, the space division concept in cell transmission model is introduced to discretize the proposed model both in space and time. The model parameters are sequentially updated based on the statistical properties of the recent radar data and the new predicting results. The proposed method is applied to a real data set from Shanghai Area Control Center for the short‐term air traffic flow prediction both at flight path and en route sector level. The analysis of the case study shows that the developed method can characterize well the dynamics of the en route traffic flow, thereby providing satisfactory prediction results with appropriate uncertainty limits. The mean relative prediction errors are less than 0.10 and 0.14, and the absolute errors fall in the range of 0 to 1 and 0 to 3 in more than 95% time intervals respectively, for the flight path and en route sector level. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
Neural networks have been extensively applied to short-term traffic prediction in the past years. This study proposes a novel architecture of neural networks, Long Short-Term Neural Network (LSTM NN), to capture nonlinear traffic dynamic in an effective manner. The LSTM NN can overcome the issue of back-propagated error decay through memory blocks, and thus exhibits the superior capability for time series prediction with long temporal dependency. In addition, the LSTM NN can automatically determine the optimal time lags. To validate the effectiveness of LSTM NN, travel speed data from traffic microwave detectors in Beijing are used for model training and testing. A comparison with different topologies of dynamic neural networks as well as other prevailing parametric and nonparametric algorithms suggests that LSTM NN can achieve the best prediction performance in terms of both accuracy and stability.  相似文献   

17.
Effective prediction of bus arrival times is important to advanced traveler information systems (ATIS). Here a hybrid model, based on support vector machine (SVM) and Kalman filtering technique, is presented to predict bus arrival times. In the model, the SVM model predicts the baseline travel times on the basic of historical trips occurring data at given time‐of‐day, weather conditions, route segment, the travel times on the current segment, and the latest travel times on the predicted segment; the Kalman filtering‐based dynamic algorithm uses the latest bus arrival information, together with estimated baseline travel times, to predict arrival times at the next point. The predicted bus arrival times are examined by data of bus no. 7 in a satellite town of Dalian in China. Results show that the hybrid model proposed in this paper is feasible and applicable in bus arrival time forecasting area, and generally provides better performance than artificial neural network (ANN)–based methods. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Incident clearance time is a major performance measure of the traffic emergency management. A clear understanding of the contributing factors and their effects on incident clearance time is essential for optimal incident management resource allocations. Most previous studies simply considered the average effects of the influential factors. Although the time-varying effects are also important for incident management agencies, they were not sufficiently investigated. To fill up the gap, this study develops a non-proportional hazard-based duration model for analyzing the time-varying effects of influential factors on incident clearance time. This study follows a systematic approach incorporating the following three procedures: proportionality test, model development/estimation, and effectiveness test. Applying the proposed model to the 2009 Washington State Incident Tracking System data, five factors were found to have significant but constant (or time independent) effects on the clearance time, which is similar to the findings from previous studies. However, our model also discovered thirteen variables that have significant time-varying impacts on clearance hazard. These factors cannot be identified through the conventional methods used in most previous studies. The influential factors are investigated from both macroscopic and microscopic perspectives. The population average effect evaluation provides the macroscopic insight and benefits long-term incident management, and the time-dependent pattern identification offers microscopic and time-sequential insight and benefits the specific incident clearance process.  相似文献   

19.
In recent years, increasing attention has been drawn to the development of various applications of intelligent transportation systems (ITS), which are credited with the amelioration of traffic conditions in urban and regional environments. Advanced traveler information systems (ATIS) constitute an important element of ITS by providing potential travelers with information on the network's current performance both en-route and pre-trip. In order to tackle the complexity of such systems, derived from the difficulty of providing real-time estimations of current as well as forecasts of future traffic conditions, a series of models and algorithms have been initiated. This paper proposes the development of an integrated framework for real-time ATIS and presents its application on a large-scale network, that of Thessaloniki, Greece, concluding with a discussion on development and implementation challenges as well as on the advantages and limitations of such an effort.  相似文献   

20.
A grid based modelling approach akin to cellular automata (CA) is adopted for heterogeneous traffic flow simulation. The road space is divided into a grid of equally sized cells. Moreover, each vehicle type occupies one or more cell as per its size unlike CA traffic flow model where each vehicle is represented by a single cell. Model needs inputs such as vehicle size, its maximum speed, acceleration, deceleration, probability constants, and arrival pattern. The position and speed of the vehicles are assumed to be discrete. The speed of each vehicle changes according to its interactions with other vehicles, following some stochastic rules depending on the circumstances. The model is calibrated and validated using real data and VISSIM. The results indicate that grid based model can reasonably well simulate complex heterogeneous traffic as well as offers higher computational efficiency needed for real time application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号