共查询到20条相似文献,搜索用时 0 毫秒
1.
Vehicular ad hoc networks (VANETs) formed by connected vehicles in a traffic stream could be applied to improve safety, mobility, and environmental impacts of a transportation system. In this paper, we present analytical models for the instantaneous communication throughputs of VANETs to measure the efficiency of information propagation under various traffic conditions at a time instant. In particular, we define broadcast and unicast communication throughputs by the wireless channel bandwith multiplied by the average probabilities that one vehicle is a successful receiver and sender in a VAENT, respectively. With a protocol communication model, we derive formulas to determine the probabilities for an equipped vehicle to be a successful broadcast receiver and a successful unicast receiver/sender, and obtain broadcast and unicast throughputs along discrete and continuous traffic streams. We further examine the impacts on communication throughputs of the transmission range and the interference range of dedicated short range communication devices as well as the market penetration rate of equipped vehicles and the percentage of senders. Finally, we investigate the influence of shock waves on communication throughputs. 相似文献
2.
This paper develops a mathematical approach to optimize a time-dependent deployment plan of autonomous vehicle (AV) lanes on a transportation network with heterogeneous traffic stream consisting of both conventional vehicles (CVs) and AVs, so as to minimize the social cost and promote the adoption of AVs. Specifically, AV lanes are exclusive lanes that can only be utilized by AVs, and the deployment plan specifies when, where, and how many AV lanes to be deployed. We first present a multi-class network equilibrium model to describe the flow distributions of both CVs and AVs, given the presence of AV lanes in the network. Considering that the net benefit (e.g., reduced travel cost) derived from the deployment of AV lanes will further promote the AV adoption, we proceed to apply a diffusion model to forecast the evolution of AV market penetration. With the equilibrium model and diffusion model, a time-dependent deployment model is then formulated, which can be solved by an efficient solution algorithm. Lastly, numerical examples based on the south Florida network are presented to demonstrate the proposed models. 相似文献
3.
This paper proposes a novel dynamic speed limit control model accounting for uncertain traffic demand and supply in a stochastic traffic network. First, a link based dynamic network loading model is developed to simulate the traffic flow propagation allowing the change of speed limits. Shockwave propagation is well defined and captured by checking the difference between the queue forming end and the dissipation end. Second, the dynamic speed limit problem is formulated as a Markov Decision Process (MDP) problem and solved by a real time control mechanism. The speed limit controller is modeled as an intelligent agent interacting with the stochastic network environment stochastic network environment to assign time dependent link based speed limits. Based on different metrics, e.g. total network throughput, delay time, vehicular emissions are optimized in the modeling framework, the optimal speed limit scheme is obtained by applying the R-Markov Average Reward Technique (R-MART) based reinforcement learning algorithm. A case study of the Sioux Falls network is constructed to test the performance of the model. Results show that the total travel time and emissions (in terms of CO) are reduced by around 18% and 20% compared with the base case of non-speed limit control. 相似文献
4.
Information from connected vehicles, such as the position and speed of individual vehicles, can be used to optimize traffic operations at an intersection. This paper proposes such an algorithm for two one-way-streets assuming that only a certain percentage of cars are equipped with this technology. The algorithm enumerates different sequences of cars discharging from the intersection to minimize the objective function. Benefits of platooning (multiple cars consecutively discharging from a queue) and signal flexibility (adaptability to demand) are also considered. The goal is to gain insights about the value (in terms of delay savings) of using connected vehicle technology for intersection control.Simulations are conducted for different total demand values and demand ratios to understand the effects of changing the minimum green time at the signal and the penetration rate of connected cars. Using autonomous vehicle control systems, the signal could rapidly change the direction of priority without relying on the reaction of drivers. However, without this technology a minimum green time is necessary. The results of the simulations show that a minimum green time increases the delay only for the low and balanced demand scenarios. Therefore, the value of using cars with autonomous vehicle control can only be seen at intersections with this kind of demand patterns, and could result in up to 7% decrease in delay. On the other hand, using information from connected vehicles to better adapt the traffic signal has proven to be indeed very valuable. Increases in the penetration rate from 0% up to 60% can significantly reduce the average delay (in low demand scenarios a decrease in delay of up to 60% can be observed). That being said, after a penetration rate of 60%, while the delays continue to decrease, the rate of reduction decreases and the marginal value of information from communication technologies diminishes. Overall, it is observed that connected vehicle technology could significantly improve the operation of traffic at signalized intersections, at least under the proposed algorithm. 相似文献
5.
As electric vehicles (EVs) have gained an increasing market penetration rate, the traffic on urban roads will tend to be a mix of traditional gasoline vehicles (GVs) and EVs. These two types of vehicles have different energy consumption characteristics, especially the high energy efficiency and energy recuperation system of EVs. When GVs and EVs form a platoon that is recognized as an energy-friendly traffic pattern, it is critical to holistically consider the energy consumption characteristics of all vehicles to maximize the energy efficiency benefit of platooning. To tackle this issue, this paper develops an optimal control model as a foundation to provide eco-driving suggestions to the mixed-traffic platoon. The proposed model leverages the promising connected vehicle technology assuming that the speed advisory system can obtain the information on the characteristics of all platoon vehicles. To enhance the model applicability, the study proposes two eco-driving advisory strategies based on the developed optimal control model. One strategy provides the lead vehicle an acceleration profile, while the other provides a set of targeted cruising speeds. The acceleration-based eco-driving advisory strategy is suitable for platoons with an automated leader, and the speed-based advisory strategy is more friendly for platoons with a human-operated leader. Results of numerical experiments demonstrate the significance when the eco-driving advisory system holistically considers energy consumption characteristics of platoon vehicles. 相似文献
6.
The integration of electric vehicles (EVs) will affect both electricity and transport systems and research is needed on finding possible ways to make a smooth transition to the electrification of the road transport. To fully understand the EV integration consequences, the behaviour of the EV drivers and its impact on these two systems should be studied. This paper describes an integrated simulation-based approach, modelling the EV and its interactions in both road transport and electric power systems. The main components of both systems have been considered, and the EV driver behaviour was modelled using a multi-agent simulation platform. Considering a fleet of 1000 EV agents, two behavioural profiles were studied (Unaware/Aware) to model EV driver behaviour. The two behavioural profiles represent the EV driver in different stages of EV adoption starting with Unaware EV drivers when the public acceptance of EVs is limited, and developing to Aware EV drivers as the electrification of road transport is promoted in an overall context. The EV agents were modelled to follow a realistic activity-based trip pattern, and the impact of EV driver behaviour was simulated on a road transport and electricity grid. It was found that the EV agents’ behaviour has direct and indirect impact on both the road transport network and the electricity grid, affecting the traffic of the roads, the stress of the distribution network and the utilization of the charging infrastructure. 相似文献
7.
The state of the practice traffic signal control strategies mainly rely on infrastructure based vehicle detector data as the input for the control logic. The infrastructure based detectors are generally point detectors which cannot directly provide measurement of vehicle location and speed. With the advances in wireless communication technology, vehicles are able to communicate with each other and with the infrastructure in the emerging connected vehicle system. Data collected from connected vehicles provides a much more complete picture of the traffic states near an intersection and can be utilized for signal control. This paper presents a real-time adaptive signal phase allocation algorithm using connected vehicle data. The proposed algorithm optimizes the phase sequence and duration by solving a two-level optimization problem. Two objective functions are considered: minimization of total vehicle delay and minimization of queue length. Due to the low penetration rate of the connected vehicles, an algorithm that estimates the states of unequipped vehicle based on connected vehicle data is developed to construct a complete arrival table for the phase allocation algorithm. A real-world intersection is modeled in VISSIM to validate the algorithms. Results with a variety of connected vehicle market penetration rates and demand levels are compared to well-tuned fully actuated control. In general, the proposed control algorithm outperforms actuated control by reducing total delay by as much as 16.33% in a high penetration rate case and similar delay in a low penetration rate case. Different objective functions result in different behaviors of signal timing. The minimization of total vehicle delay usually generates lower total vehicle delay, while minimization of queue length serves all phases in a more balanced way. 相似文献
8.
The benefit of eco-driving of electric vehicles (EVs) has been studied with the promising connected vehicle (i.e. V2X) technology in recent years. Whereas, it is still in doubt that how traffic signal control affects EV energy consumption. Therefore, it is necessary to explore the interactions between the traffic signal control and EV energy consumption. This research aims at studying the energy efficiency and traffic mobility of the EV system under V2X environment. An optimization model is proposed to meet both operation and energy efficiency for an EV transportation system with both connected EVs (CEVs) and non-CEVs. For CEVs, a stage-wise approximation model is implemented to provide an optimal speed control strategy. Non-CEVs obey a car-following rule suggested by the well-known Intelligent Driver Model (IDM) to achieve eco-driving. The eco-driving EV system is then integrated with signal control and a bi-objective and multi-stage optimization problem is formulated. For such a large-scale problem, a hybrid intelligent algorithm merging genetic algorithm (GA) and particle swarm optimization (PSO) is implemented. At last, a validation case is performed on an arterial with four intersections with different traffic demands. Results show that cycle-based signal control could improve both traffic mobility and energy saving of the EV system with eco-driving compared to a fixed signal timing plan. The total consumed energy decreases as the CEV penetration rate augments in general. 相似文献
9.
Connected vehicles will change the modes of future transportation management and organization, especially at intersections. In this paper, we propose a distributed conflict-free cooperation method for multiple connected vehicles at unsignalized intersections. We firstly project the approaching vehicles from different traffic movements into a virtual lane and introduce a conflict-free geometry topology considering the conflict relationship of involved vehicles, thus constructing a virtual platoon. Then we present the modeling of communication topology to describe two modes of information transmission between vehicles. Finally, a distributed controller is designed to stabilize the virtual platoon for conflict-free cooperation at intersections. Numerical simulations validate the effectiveness of this method. 相似文献
10.
The Connected Vehicle (CV) technology is a mobile platform that enables a new dimension of data exchange among vehicles and between vehicles and infrastructure. This data source could improve the estimation of Measures of Effectiveness (MOEs) for traffic operations in real-time, allowing to perfectly monitor traffic states after being fully adopted. However, as with any novel technology, the CV adoption will be a gradual process. This research focuses on determining minimum CV technology penetration rates that would guarantee accurate MOE estimates on signalized arterials. First, we present estimation methods for various MOEs such as average speed, number of stops, acceleration noise, and delay, followed by an initial assessment of the penetration rates required to accurately estimate them in undersaturated and oversaturated conditions. Next, we propose a methodology to determine the minimum CV market penetration rates to guarantee accurate MOE estimates as a function of traffic conditions, signal settings, sampling duration, and the MOE variability. A correction factor is also provided to account for small vehicle populations where sampling is done without replacement. The methodology is tested in a simulated segment of the San Pablo Avenue arterial in Berkeley, CA. The outcomes show that the minimum penetration rate required can be estimated within 1% for most MOEs under a wide range of traffic conditions. The proposed methodology can be used to determine if MOE estimates obtained with a portion of CV equipped vehicles can yield accurate enough results. The methodology could also be used to develop and assess control strategies towards improved arterial traffic operations. 相似文献
11.
This research presents an integrated optimal controller to maximize the fuel efficiency of a Hybrid Electric Vehicle (HEV) traveling on rolling terrain. The controller optimizes both the vehicle acceleration and the hybrid powertrain operation. It takes advantage of the emerging Connected Vehicle (CV) technology and utilizes present and future information as optimization input, which includes road topography, and dynamic speed limit. The optimal control problem was solved using Pontryagin’s Minimum Principle (PMP). Efforts were made to reduce the computational burden of the optimization process. The evaluation shows that the benefit of the proposed optimal controller is significant compared to regular HEV cruising at the speed limit on rolling terrain. The benefit ranges from 5.0% to 8.9% on mild slopes and from 15.7% to 16.9% on steep slopes. The variation is caused by the change of hilly road density. 相似文献
12.
This paper proposes a novel approach to integrate optimal control of perimeter intersections (i.e. to minimize local delay) into the perimeter control scheme (i.e. to optimize traffic performance at the network level). This is a complex control problem rarely explored in the literature. In particular, modeling the interaction between the network level control and the local level control has not been fully considered. Utilizing the Macroscopic Fundamental Diagram (MFD) as the traffic performance indicator, we formulate a dynamic system model, and design a Model Predictive Control (MPC) based controller coupling two competing control objectives and optimizing the performance at the local and the network level as a whole. To solve this highly non-linear optimization problem, we employ an approximation framework, enabling the optimal solution of this large-scale problem to be feasible and efficient. Numerical analysis shows that by applying the proposed controller, the protected network can operate around the desired state as expressed by the MFD, while the total delay at the perimeter is minimized as well. Moreover, the paper sheds light on the robustness of the proposed controller. This multi-scale hybrid controller is further extended to a stochastic MPC scheme, where connected vehicles (CV) serve as the only data source. Hence, low penetration rates of CVs lead to strong noises in the controller. This is a first attempt to develop a network-level traffic control methodology by using the emerging CV technology. We consider the stochasticity in traffic state estimation and the shape of the MFD. Simulation analysis demonstrates the robustness of the proposed stochastic controller, showing that efficient controllers can indeed be designed with this newly-spread vehicle technology even in the absence of other data collection schemes (e.g. loop detectors). 相似文献
13.
This paper proposes nonlinear consensus-based control strategies for a connected vehicle (CV) platoon under different communication topologies. In particular, pinning control based consensus protocols are proposed by incorporating the car-following interactions between CVs under fixed and switching communication topologies. The finite-time stability and consensus of the proposed protocols are rigorously analyzed using the LaSalle’s invariance principle and Lyapunov technique. The theoretical analyses investigate the impacts of communication topology on convergence and stability of CV platoon. This study conducts numerical experiments for a CV platoon under four scenarios: (i) Fixed communication topology with time-invariant leader, (ii) fixed communication topology with time-variant leader, (iii) switching communication topology with time-invariant leader, and (iv) switching communication topology with time-variant leader. Simulations results illustrate the effectiveness of the proposed protocols in terms of convergence time and stability with respect to position and velocity profiles. 相似文献
14.
The representation and implementation of time-dependent inundation in large-scale microscopic evacuation simulations 总被引:1,自引:0,他引:1
Gregor Lmmel Dominik Grether Kai Nagel 《Transportation Research Part C: Emerging Technologies》2010,18(1):84-98
Multi-agent simulation has increasingly been used for transportation simulation in recent years. With current techniques, it is possible to simulate systems consisting of several million agents. Such multi-agent simulations have been applied to whole cities and even large regions. In this paper it is demonstrated how to adapt an existing multi-agent transportation simulation framework to large-scale pedestrian evacuation simulation. The underlying flow model simulates the traffic-based on a simple queue model where only free speed, bottleneck capacities, and space constraints are taken into account. The queue simulation, albeit simple, captures the most important aspects of evacuations such as the congestion effects of bottlenecks and the time needed to evacuate the endangered area. In the case of an evacuation simulation the network has time-dependent attributes. For instance, large-scale inundations or conflagrations do not cover all the endangered area at once.These time-dependent attributes are modeled as network change events. Network change events are modifying link parameters at predefined points in time. The simulation framework is demonstrated through a case study for the Indonesian city of Padang, which faces a high risk of being inundated by a tsunami. 相似文献
15.
In real traffic networks, travellers’ route choice is affected by traffic control strategies. In this research, we capture the interaction between travellers’ route choice and traffic signal control in a coherent framework. For travellers’ route choice, a VANET (Vehicular Ad hoc NETwork) is considered, where travellers have access to the real-time traffic information through V2V/V2I (Vehicle to Vehicle/Vehicle to Infrastructure) infrastructures and make route choice decisions at each intersection using hyper-path trees. We test our algorithm and control strategy by simulation in OmNet++ (A network communication simulator) and SUMO (Simulation of Urban MObility) under several scenarios. The simulation results show that with the proposed dynamic routing, the overall travel cost significantly decreases. It is also shown that the proposed adaptive signal control reduces the average delay effectively, as well as reduces the fluctuation of the average speed within the whole network. 相似文献
16.
In this paper, we consider connected cruise control design in mixed traffic flow where most vehicles are human-driven. We first propose a sweeping least square method to estimate in real time feedback gains and driver reaction time of human-driven vehicles around the connected automated vehicle. Then we propose an optimal connected cruise controller based on the mean dynamics of human driving behavior. We test the performance of both the estimation algorithm and the connected cruise control algorithm using experimental data. We demonstrate that by combining the proposed estimation algorithm and the optimal controller, the connected automated vehicle has significantly improved performance compared to a human-driven vehicle. 相似文献
17.
In this paper, we present results regarding the experimental validation of connected automated vehicle design. In order for a connected automated vehicle to integrate well with human-dominated traffic, we propose a class of connected cruise control algorithms with feedback structure originated from human driving behavior. We test the connected cruise controllers using real vehicles under several driving scenarios while utilizing beyond-line-of-sight motion information obtained from neighboring human-driven vehicles via vehicle-to-everything (V2X) communication. We experimentally show that the design is robust against variations in human behavior as well as changes in the topology of the communication network. We demonstrate that both safety and energy efficiency can be significantly improved for the connected automated vehicle as well as for the neighboring human-driven vehicles and that the connected automated vehicle may bring additional societal benefits by mitigating traffic waves. 相似文献
18.
This paper describes a connected-vehicle-based system architecture which can provide more precise and comprehensive information on bus movements and passenger status. Then a dynamic control method is proposed using connected vehicle data. Traditionally, the bus bunching problem has been formulated into one of two types of optimization problem. The first uses total passenger time cost as the objective function and capacity, safe headway, and other factors as constraints. Due to the large number of scenarios considered, this type of framework is inefficient for real-time implementation. The other type uses headway adherence as the objective and applies a feedback control framework to minimize headway variations. Due to the simplicity in the formulation and solution algorithms, the headway-based models are more suitable for real-time transit operations. However, the headway-based feedback control framework proposed in the literature still assumes homogeneous conditions at all bus stations, and does not consider restricting passenger loads within the capacity constraints. In this paper, a dynamic control framework is proposed to improve not only headway adherence but also maintain the stability of passenger load within bus capacity in both homogenous and heterogeneous situations at bus stations. The study provides the stability conditions for optimal control with heterogeneous bus conditions and derives optimal control strategies to minimize passenger transit cost while maintaining vehicle loading within capacity constraints. The proposed model is validated with a numerical analysis and case study based on field data collected in Chengdu, China. The results show that the proposed model performs well on high-demand bus routes. 相似文献
19.
This research proposes an optimal controller to improve fuel efficiency for a vehicle equipped with automatic transmission traveling on rolling terrain without the presence of a close preceding vehicle. Vehicle acceleration and transmission gear position are optimized simultaneously to achieve a better fuel efficiency. This research leverages the emerging Connected Vehicle technology and utilizes present and future information—such as real-time dynamic speed limit, vehicle speed, location and road topography—as optimization input. The optimal control is obtained using the Relaxed Pontryagin’s Minimum Principle. The benefit of the proposed optimal controller is significant compared to the regular cruise control and other eco-drive systems. It varies with the hill length, grade, and the number of available gear positions. It ranges from an increased fuel saving of 18–28% for vehicles with four-speed transmission and 25–45% for vehicles with six-speed transmission. The computational time for the optimization is 1.0–2.1 s for the four-speed vehicle and 1.8–3.9 s for the six-speed vehicle, given a 50 s optimization time horizon and 0.1 s time step. The proposed controller can potentially be used in real-time. 相似文献
20.
This paper presents a Distributed-Coordinated methodology for signal timing optimization in connected urban street networks. The underlying assumption is that all vehicles and intersections are connected and intersections can share information with each other. The novelty of the work arises from reformulating the signal timing optimization problem from a central architecture, where all signal timing parameters are optimized in one mathematical program, to a decentralized approach, where a mathematical program controls the timing of only a single intersection. As a result of this distribution, the complexity of the problem is significantly reduced thus, the proposed approach is real-time and scalable. Furthermore, distributed mathematical programs continuously coordinate with each other to avoid finding locally optimal solutions and to move towards global optimality. We proposed a real-time and scalable solution technique to solve the problem and applied it to several case study networks under various demand patterns. The algorithm controlled queue length and maximized intersection throughput (between 1% and 5% increase compared to the actuated coordinated signals optimized in VISTRO) and reduced travel time (between 17% and 48% decrease compared to actuated coordinated signals) in all cases. 相似文献