首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Autonomous and connected vehicles are expected to enable new tolling mechanisms, such as auction-based tolls, for allocating the limited roadway capacity. This research examines the public perception of futuristic auction-based tolling systems, with a focus on the public acceptance of such systems over current tolling practices on highways (e.g., dynamic and fixed tolling methodologies). Through a stated-preference survey, responses from 159 road-users residing in Virginia are elicited to understand route choice behavior under a descending price auction implemented on a hypothetical two-route network. Analysis of the survey data shows that there is no outright rejection of the presented auction-based tolling among those who are familiar with the current tolling methods. While males strongly support the new method, no clear pattern emerges among other demographic variables such as income and education level, and age. While high income respondents and regular commuters are more likely to pay higher tolls, no statistical significance between different genders, age groups, household sizes, and education levels is found. Based on the modeling results and the hypothetical road network, it is found that descending price tolling method yields higher average toll rates, and generates at least 70% more revenue when travel time saving is 30 min, and improves capacity utilization of the toll road significantly compared to fixed tolls.  相似文献   

2.
Intersections are the bottlenecks of the urban road system because an intersection’s capacity is only a fraction of the maximum flows that the roads connecting to the intersection can carry. This capacity can be increased if vehicles cross the intersections in platoons rather than one by one as they do today. Platoon formation is enabled by connected vehicle technology. This paper assesses the potential mobility benefits of platooning. It argues that saturation flow rates, and hence intersection capacity, can be doubled or tripled by platooning. The argument is supported by the analysis of three queuing models and by the simulation of a road network with 16 intersections and 73 links. The queuing analysis and the simulations reveal that a signalized network with fixed time control will support an increase in demand by a factor of (say) two or three if all saturation flows are increased by the same factor, with no change in the control. Furthermore, despite the increased demand vehicles will experience the same delay and travel time. The same scaling improvement is achieved when the fixed time control is replaced by the max pressure adaptive control. Part of the capacity increase can alternatively be used to reduce queue lengths and the associated queuing delay by decreasing the cycle time. Impediments to the control of connected vehicles to achieve platooning at intersections appear to be small.  相似文献   

3.
Connected and automated vehicles (CAV) are marketed for their increased safety, driving comfort, and time saving potential. With much easier access to information, increased processing power, and precision control, they also offer unprecedented opportunities for energy efficient driving. This paper is an attempt to highlight the energy saving potential of connected and automated vehicles based on first principles of motion, optimal control theory, and a review of the vast but scattered eco-driving literature. We explain that connectivity to other vehicles and infrastructure allows better anticipation of upcoming events, such as hills, curves, slow traffic, state of traffic signals, and movement of neighboring vehicles. Automation allows vehicles to adjust their motion more precisely in anticipation of upcoming events, and save energy. Opportunities for cooperative driving could further increase energy efficiency of a group of vehicles by allowing them to move in a coordinated manner. Energy efficient motion of connected and automated vehicles could have a harmonizing effect on mixed traffic, leading to additional energy savings for neighboring vehicles.  相似文献   

4.
Connected vehicle technology can be beneficial for traffic operations at intersections. The information provided by cars equipped with this technology can be used to design a more efficient signal control strategy. Moreover, it can be possible to control the trajectory of automated vehicles with a centralized controller. This paper builds on a previous signal control algorithm developed for connected vehicles in a simple, single intersection. It improves the previous work by (1) integrating three different stages of technology development; (2) developing a heuristics to switch the signal controls depending on the stage of technology; (3) increasing the computational efficiency with a branch and bound solution method; (4) incorporating trajectory design for automated vehicles; (5) using a Kalman filter to reduce the impact of measurement errors on the final solution. Three categories of vehicles are considered in this paper to represent different stages of this technology: conventional vehicles, connected but non-automated vehicles (connected vehicles), and automated vehicles. The proposed algorithm finds the optimal departure sequence to minimize the total delay based on position information. Within each departure sequence, the algorithm finds the optimal trajectory of automated vehicles that reduces total delay. The optimal departure sequence and trajectories are obtained by a branch and bound method, which shows the potential of generalizing this algorithm to a complex intersection.Simulations are conducted for different total flows, demand ratios and penetration rates of each technology stage (i.e. proportion of each category of vehicles). This algorithm is compared to an actuated signal control algorithm to evaluate its performance. The simulation results show an evident decrease in the total number of stops and delay when using the connected vehicle algorithm for the tested scenarios with information level of as low as 50%. Robustness of this algorithm to different input parameters and measurement noises are also evaluated. Results show that the algorithm is more sensitive to the arrival pattern in high flow scenarios. Results also show that the algorithm works well with the measurement noises. Finally, the results are used to develop a heuristic to switch between the different control algorithms, according to the total demand and penetration rate of each technology.  相似文献   

5.
This paper presents a fuel efficient control strategy for a group of connected hybrid electric vehicles (HEVs) in urban road conditions. A hierarchical control architecture is proposed in this paper for every HEV, where the higher level and the lower level controller share information with each other and solve two different problems that aim at improving its fuel efficiency. The higher level controller of each HEV is considered to utilize traffic light information, through vehicle to infrastructure (V2I) communication, and state information of the vehicles in its near neighborhood, via vehicle to vehicle (V2V) communication. Apart from that, the higher level controller of each HEV uses the recuperation information from the lower level controller and provides it the optimal velocity profile by solving its problem in a model predictive control framework. Each lower level controller uses adaptive equivalent consumption minimization strategy (ECMS) for following their velocity profiles, obtained from the higher level controller, in a fuel efficient manner. In this paper, the vehicles are modeled in Autonomie software and the simulation results are provided in the paper that shows the effectiveness of the proposed control architecture.  相似文献   

6.
The introduction of connected and autonomous vehicles will bring changes to the highway driving environment. Connected vehicle technology provides real-time information about the surrounding traffic condition and the traffic management center’s decisions. Such information is expected to improve drivers’ efficiency, response, and comfort while enhancing safety and mobility. Connected vehicle technology can also further increase efficiency and reliability of autonomous vehicles, though these vehicles could be operated solely with their on-board sensors, without communication. While several studies have examined the possible effects of connected and autonomous vehicles on the driving environment, most of the modeling approaches in the literature do not distinguish between connectivity and automation, leaving many questions unanswered regarding the implications of different contemplated deployment scenarios. There is need for a comprehensive acceleration framework that distinguishes between these two technologies while modeling the new connected environment. This study presents a framework that utilizes different models with technology-appropriate assumptions to simulate different vehicle types with distinct communication capabilities. The stability analysis of the resulting traffic stream behavior using this framework is presented for different market penetration rates of connected and autonomous vehicles. The analysis reveals that connected and autonomous vehicles can improve string stability. Moreover, automation is found to be more effective in preventing shockwave formation and propagation under the model’s assumptions. In addition to stability, the effects of these technologies on throughput are explored, suggesting substantial potential throughput increases under certain penetration scenarios.  相似文献   

7.
With the advent of connected and automated vehicle technology, in this paper, we propose an innovative intersection operation scheme named as MCross: Maximum Capacity inteRsection Operation Scheme with Signals. This new scheme maximizes intersection capacity by utilizing all lanes of a road simultaneously. Lane assignment and green durations are dynamically optimized by solving a multi-objective mixed-integer non-linear programming problem. The demand conditions under which full capacity can be achieved in MCross are derived analytically. Numerical examples show that MCross can almost double the intersection capacity (increase by as high as 99.51% in comparison to that in conventional signal operation scheme).  相似文献   

8.
This paper presents a thorough microscopic simulation investigation of a recently proposed methodology for highway traffic estimation with mixed traffic, i.e., traffic comprising both connected and conventional vehicles, which employs only speed measurements stemming from connected vehicles and a limited number (sufficient to guarantee observability) of flow measurements from spot sensors. The estimation scheme is tested using the commercial traffic simulator Aimsun under various penetration rates of connected vehicles, employing a traffic scenario that features congested as well as free-flow conditions. The case of mixed traffic comprising conventional and connected vehicles equipped with adaptive cruise control, which feature a systematically different car-following behavior than regular vehicles, is also considered. In both cases, it is demonstrated that the estimation results are satisfactory, even for low penetration rates.  相似文献   

9.
In this paper, we present results regarding the experimental validation of connected automated vehicle design. In order for a connected automated vehicle to integrate well with human-dominated traffic, we propose a class of connected cruise control algorithms with feedback structure originated from human driving behavior. We test the connected cruise controllers using real vehicles under several driving scenarios while utilizing beyond-line-of-sight motion information obtained from neighboring human-driven vehicles via vehicle-to-everything (V2X) communication. We experimentally show that the design is robust against variations in human behavior as well as changes in the topology of the communication network. We demonstrate that both safety and energy efficiency can be significantly improved for the connected automated vehicle as well as for the neighboring human-driven vehicles and that the connected automated vehicle may bring additional societal benefits by mitigating traffic waves.  相似文献   

10.
The state of the practice traffic signal control strategies mainly rely on infrastructure based vehicle detector data as the input for the control logic. The infrastructure based detectors are generally point detectors which cannot directly provide measurement of vehicle location and speed. With the advances in wireless communication technology, vehicles are able to communicate with each other and with the infrastructure in the emerging connected vehicle system. Data collected from connected vehicles provides a much more complete picture of the traffic states near an intersection and can be utilized for signal control. This paper presents a real-time adaptive signal phase allocation algorithm using connected vehicle data. The proposed algorithm optimizes the phase sequence and duration by solving a two-level optimization problem. Two objective functions are considered: minimization of total vehicle delay and minimization of queue length. Due to the low penetration rate of the connected vehicles, an algorithm that estimates the states of unequipped vehicle based on connected vehicle data is developed to construct a complete arrival table for the phase allocation algorithm. A real-world intersection is modeled in VISSIM to validate the algorithms. Results with a variety of connected vehicle market penetration rates and demand levels are compared to well-tuned fully actuated control. In general, the proposed control algorithm outperforms actuated control by reducing total delay by as much as 16.33% in a high penetration rate case and similar delay in a low penetration rate case. Different objective functions result in different behaviors of signal timing. The minimization of total vehicle delay usually generates lower total vehicle delay, while minimization of queue length serves all phases in a more balanced way.  相似文献   

11.
This research proposed an eco-driving system for an isolated signalized intersection under partially Connected and Automated Vehicles (CAV) environment. This system prioritizes mobility before improving fuel efficiency and optimizes the entire traffic flow by optimizing speed profiles of the connected and automated vehicles. The optimal control problem was solved using Pontryagin’s Minimum Principle. Simulation-based before and after evaluation of the proposed design was conducted. Fuel consumption benefits range from 2.02% to 58.01%. The CO2 emissions benefits range from 1.97% to 33.26%. Throughput benefits are up to 10.80%. The variations are caused by the market penetration rate of connected and automated vehicles and v/c ratio. No adverse effect is observed. Detailed investigation reveals that benefits are significant as long as there is CAV and they grow with CAV’s market penetration rate (MPR) until they level off at about 40% MPR. This indicates that the proposed eco-driving system can be implemented with a low market penetration rate of connected and automated vehicles and could be implemented in a near future. The investigation also reveals that the proposed eco-driving system is able to smooth out the shock wave caused by signal controls and is robust over the impedance from conventional vehicles and randomness of traffic. The proposed system is fast in computation and has great potential for real-time implementation.  相似文献   

12.
This paper presents a Distributed-Coordinated methodology for signal timing optimization in connected urban street networks. The underlying assumption is that all vehicles and intersections are connected and intersections can share information with each other. The novelty of the work arises from reformulating the signal timing optimization problem from a central architecture, where all signal timing parameters are optimized in one mathematical program, to a decentralized approach, where a mathematical program controls the timing of only a single intersection. As a result of this distribution, the complexity of the problem is significantly reduced thus, the proposed approach is real-time and scalable. Furthermore, distributed mathematical programs continuously coordinate with each other to avoid finding locally optimal solutions and to move towards global optimality. We proposed a real-time and scalable solution technique to solve the problem and applied it to several case study networks under various demand patterns. The algorithm controlled queue length and maximized intersection throughput (between 1% and 5% increase compared to the actuated coordinated signals optimized in VISTRO) and reduced travel time (between 17% and 48% decrease compared to actuated coordinated signals) in all cases.  相似文献   

13.
A Model Predictive Control (MPC) strategy for motorway traffic management, which takes into account both conventional control measures and control actions executed by vehicles equipped with Vehicle Automation and Communication Systems (VACS), is presented and evaluated using microscopic traffic simulation. A stretch of the motorway A20, which connects Rotterdam to Gouda in the Netherlands, is taken as a realistic test bed. In order to ensure the reliability of the application results, extensive speed and flow measurements, collected from the field, are used to calibrate the site’s microscopic traffic simulation model. The efficiency of the MPC framework, applied to this real sizable and complex network under realistic traffic conditions, is examined for different traffic conditions and different penetration rates of equipped vehicles. The adequacy of the control application when only VACS equipped vehicles are used as actuators, is also considered, and the related findings underline the significance of conventional control measures during a transition period or in case of increased future demand.  相似文献   

14.
When vehicles share their status information with other vehicles or the infrastructure, driving actions can be planned better, hazards can be identified sooner, and safer responses to hazards are possible. The Safety Pilot Model Deployment (SPMD) is underway in Ann Arbor, Michigan; the purpose is to demonstrate connected technologies in a real-world environment. The core data transmitted through Vehicle-to-Vehicle and Vehicle-to-Infrastructure (or V2V and V2I) applications are called Basic Safety Messages (BSMs), which are transmitted typically at a frequency of 10 Hz. BSMs describe a vehicle’s position (latitude, longitude, and elevation) and motion (heading, speed, and acceleration). This study proposes a data analytic methodology to extract critical information from raw BSM data available from SPMD. A total of 968,522 records of basic safety messages, gathered from 155 trips made by 49 vehicles, was analyzed. The information extracted from BSM data captured extreme driving events such as hard accelerations and braking. This information can be provided to drivers, giving them instantaneous feedback about dangers in surrounding roadway environments; it can also provide control assistance. While extracting critical information from BSMs, this study offers a fundamental understanding of instantaneous driving decisions. Longitudinal and lateral accelerations included in BSMs were specifically investigated. Varying distributions of instantaneous longitudinal and lateral accelerations are quantified. Based on the distributions, the study created a framework for generating alerts/warnings, and control assistance from extreme events, transmittable through V2V and V2I applications. Models were estimated to untangle the correlates of extreme events. The implications of the findings and applications to connected vehicles are discussed in this paper.  相似文献   

15.
ABSTRACT

Connected and autonomous vehicle (CAV) technologies are expected to change driving/vehicle behavior on freeways. This study investigates the impact of CAVs on freeway capacity using a microsimulation tool. A four-lane basic freeway segment is selected as the case study through the Caltrans Performance Measurement System (PeMS). To obtain valid results, various driving behavior parameters are calibrated to the real traffic conditions for human-driven vehicles. In particular, the calibration is conducted using genetic algorithm. A revised Intelligent Driver Model (IDM) is developed and used as the car-following model for CAVs. The simulation is conducted on the basic freeway segment under different penetration rates of CAVs and different freeway speed limits. The results show that with an increase in the market penetration rate, freeway capacity increases, and will increase significantly as the speed limit increases.  相似文献   

16.
Connected vehicles will change the modes of future transportation management and organization, especially at intersections. In this paper, we propose a distributed conflict-free cooperation method for multiple connected vehicles at unsignalized intersections. We firstly project the approaching vehicles from different traffic movements into a virtual lane and introduce a conflict-free geometry topology considering the conflict relationship of involved vehicles, thus constructing a virtual platoon. Then we present the modeling of communication topology to describe two modes of information transmission between vehicles. Finally, a distributed controller is designed to stabilize the virtual platoon for conflict-free cooperation at intersections. Numerical simulations validate the effectiveness of this method.  相似文献   

17.
The limited driving ranges, the scarcity of recharging stations and potentially long battery recharging or swapping time inevitably affect route choices of drivers of battery electric vehicles (BEVs). When traveling between their origins and destinations, this paper assumes that BEV drivers select routes and decide battery recharging plans to minimize their trip times or costs while making sure to complete their trips without running out of charge. With different considerations of flow dependency of energy consumption of BEVs and recharging time, three mathematical models are formulated to describe the resulting network equilibrium flow distributions on regional or metropolitan road networks. Solution algorithms are proposed to solve these models efficiently. Numerical examples are presented to demonstrate the models and solution algorithms.  相似文献   

18.
On the grounds that individuals heavily rely on the information that they receive from their peers when evaluating adoption of a radical innovation, this paper proposes a new approach to forecast long-term adoption of connected autonomous vehicles (CAVs). The concept of resistance is employed to explain why individuals typically tend to defer the adoption of an innovation. We assume that there exists a social network among individuals through which they communicate based on certain frequencies. In addition, individuals can be subject to media advertisement based on certain frequencies. An individual’s perceptions are dynamic and change over time as the individual is exposed to advertisement and communicates with satisfied and dissatisfied adopters. We also explicitly allow willingness-to-pay (WTP) to change as a result of peer-to-peer communication. An individual decides to adopt when (i) there is a need for a new vehicles; (ii) his/her WTP is greater than CAV price; and (iii) his/her overall impression about CAVs reaches a cutoff value. Applicability of the proposed approach is shown using a survey of employees of the University of Memphis. Our results show that the automobile fleet will be near homogenous in about 2050 only if CAV prices decrease at an annual rate of 15% or 20%. We find that a 6-month pre-introduction marketing campaign may have no significant impact on adoption trend. Marketing is shown to ignite CAV diffusion but its effect is capped. CAV market share will be close to 100% only if all adopters are satisfied with their purchases; therefore, the probability that an individual becomes a satisfied adopter plays an important role in the trend of adoption. The effect of the latter probability is more pronounced as time goes by and is also more prominent when CAV price reduces at greater rates. Some caveats may be inserted when considering the study results as the findings are subject to sample bias and data limitations.  相似文献   

19.
Connected vehicle environment provides the groundwork of future road transportation. Researches in this area are gaining a lot of attention to improve not only traffic mobility and safety, but also vehicles’ fuel consumption and emissions. Energy optimization methods that combine traffic information are proposed, but actual testing in the field proves to be rather challenging largely due to safety and technical issues. In light of this, a Hardware-in-the-Loop-System (HiLS) testbed to evaluate the performance of connected vehicle applications is proposed. A laboratory powertrain research platform, which consists of a real engine, an engine-loading device (hydrostatic dynamometer) and a virtual powertrain model to represent a vehicle, is connected remotely to a microscopic traffic simulator (VISSIM). Vehicle dynamics and road conditions of a target vehicle in the VISSIM simulation are transmitted to the powertrain research platform through the internet, where the power demand can then be calculated. The engine then operates through an engine optimization procedure to minimize fuel consumption, while the dynamometer tracks the desired engine load based on the target vehicle information. Test results show fast data transfer at every 200 ms and good tracking of the optimized engine operating points and the desired vehicle speed. Actual fuel and emissions measurements, which otherwise could not be calculated precisely by fuel and emission maps in simulations, are achieved by the testbed. In addition, VISSIM simulation can be implemented remotely while connected to the powertrain research platform through the internet, allowing easy access to the laboratory setup.  相似文献   

20.
This paper focuses on the lane-changing trajectory planning (LTP) process in the automatic driving technologies. Existing studies on the LTP algorithms are primarily the static planning method in which the states of the surrounding vehicles of a lane-changing vehicle are assumed to keep unchanged in the whole lane-changing process. However, in real-world traffic, the velocities of the surrounding vehicles change dynamically, and the lane-changing vehicle needs to adjust its velocity and positions correspondingly in real-time to maintain safety. To address such limitations, the dynamic lane-changing trajectory planning (DLTP) model is proposed in the limited literature. This paper proposes a novel DLTP model consisting of the lane-changing starting-point determination module, trajectory decision module and trajectory generation module. The model adopts a time-independent polynomial trajectory curve to avoid the unrealistic assumptions on lane-changing velocities and accelerations in the existing DLTP model. Moreover, a rollover-avoidance algorithm and a collision-avoidance algorithm containing a reaction time are presented to guarantee the lane-changing safety of automated vehicles, even in an emergent braking situation. The field lane-changing data from NGSIM data are used to construct a real traffic environment for lane-changing vehicles and verify the effectiveness of the proposed model, and CarSim is applied to investigate the traceability of the planned lane-changing trajectories using the proposed model. The results indicate that an automated vehicle can complete the lane-changing process smoothly, efficiently and safely following the trajectory planned by the proposed model, and the planned velocity and trajectory can be well-tracked by automated vehicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号