首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
Most of existing route guidance strategies achieves user optimal equilibrium by comparing travel time. Measuring travel time, however, might be uneasy on an urban road network. To contend with the issue, the paper mainly considers easily obtained inflow and outflow of a link and road capacity as input, and proposes a route guidance strategy for a single destination road network based on the determination of free-flow or congested conditions on alternative routes. An extended strategy for a complex network and a feedback approximation for avoiding forecast are further explored. Weaknesses of the strategy are also explicitly analyzed. To test the strategy, simulation investigations are conducted on two networks with multiple parallel routes. The results indicate that the strategy is able to provide stable splitting rates and to approximate user optimal equilibrium in different conditions, in particular when traffic demand is high. This strategy has potential to be applied in an urban road network due to its simplicity and easily obtained input data. The strategy is also applicable for single destination if some alternatives and similar routes are available.  相似文献   

2.
In this paper, we propose a novel approach to model route choice behaviour in a tolled road network with a bi-objective approach, assuming that all users have two objectives: (1) minimise travel time; and (2) minimise toll cost. We assume further that users have different preferences in the sense that for any given path with a specific toll, there is a limit on the time that an individual would be willing to spend. Different users can have different preferences represented by this indifference curve between toll and time. Time surplus is defined as the maximum time minus the actual time. Given a set of paths, the one with the highest (or least negative) time surplus will be the preferred path for the individual. This will result in a bi-objective equilibrium solution satisfying the time surplus maximisation bi-objective user equilibrium (TSmaxBUE) condition. That is, for each O–D pair, all individuals are travelling on the path with the highest time surplus value among all the efficient paths between this O–D pair.We show that the TSmaxBUE condition is a proper generalisation of user equilibrium with generalised cost function, and that it is equivalent to bi-objective user equilibrium. We also present a multi-user class version of the TSmaxBUE condition and demonstrate our concepts with illustrative examples.  相似文献   

3.
The paper proposes a multi-class control scheme for freeway traffic networks. This control scheme combines two control strategies, i.e. ramp metering and route guidance, in order to reduce the total time spent and the total emissions in a balanced way. In particular, the ramp metering and route guidance controllers are feedback predictive controllers, i.e. they compute the control actions not only on the basis of the measured system state, but also on the basis of the prediction of the system evolution, in terms of traffic conditions and traffic emissions. Another important feature of the controllers is that they have a multi-class nature: different classes of vehicles are considered and specific control actions are computed for each class. Since the controllers are based on a set of parameters that need to be tuned, the overall control framework also includes a module to properly determine the gains of the controllers. The simulation analysis reported in the paper shows the effectiveness of the proposed control framework and, in particular, the possibility of implementing control policies that are specific for each vehicle type.  相似文献   

4.
This paper provides a globally optimal solution to an important problem: given a real-world route, what is the most energy-efficient way to drive a vehicle from the origin to the destination within a certain period of time. Along the route, there may be multiple stop signs, traffic lights, turns and curved segments, roads with different grades and speed limits, and even leading vehicles with pre-known speed profiles. Most of such route information and features are actually constraints to the optimal vehicle speed control problem, but these constraints are described in two different domains. The most important concept in solving this problem is to convert the distance-domain route constraints to some time-domain state and input constraints that can be handled by optimization methods such as dynamic programming (DP). Multiple techniques including cost-to-go function interpolation and parallel computing are used to reduce the computation of DP and make the problem solvable within a reasonable amount of time on a personal computer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号