首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 155 毫秒
1.
针对某自主纯电动车制动减速时车内产生的啸叫问题,经主观驾评及客观测试分析后,排查出整车制动电机转速为4300rpm~3700rpm时车内出现啸叫噪声;通过齿轮啮合原理分析阐述了减速器制动减速噪声的产生机制,并进行整车测试、阶次分析等研究分析方法排查出整车制动减速过程中啸叫激励源头来自减速器一级主动齿轮阶次。结合该车型设计开发进度,提出对整车调整制动能量回收扭矩策略方案,对实施方案优化后的车辆进行主观评价和客观测试,结果表明一级主动齿轮阶次突变大幅削弱,制动减速工况车内相关阶次声压级峰值降低了5.1dB,解决了驾驶室内啸叫问题,提高了乘坐舒适性。  相似文献   

2.
机械式变速器齿轮副在啮合过程中产生的高频啸叫噪音,主要是由齿轮副的啮合错位和冲击引起的。利用振动和噪音传感器测试,通过主观评价及噪音阶次分析确定了啸叫的来源。利用Romax软件分析,通过齿轮的微观修形,降低了齿轮副的传递误差及优化了齿轮接触区域;经整车测试及主观评价,该方案对提高车内噪音品质有明显效果。  相似文献   

3.
电动车NVH性能开发中,减速器经常会产生啸叫声,严重影响车内成员的舒适性。本文主要通过主观和客观数据分析问题主要来源,然后运用仿真手段进行齿轮微观修形降低齿轮传递误差,从而优化减速器啸叫问题。数据表明针对齿轮进行微观修形能有效解决减速器啸叫问题,提升电动车NVH性能。  相似文献   

4.
纯电动汽车在整车NVH性能开发过程中,驱动电机存在8阶啸叫噪声,严重影响整车NVH性能品质。通过整车试验、主观评价及CAE仿真分析手段,验证出空气传播为车内8阶啸叫噪声大的主要路径,锁定驱动电机逆变器壳体共振及电机悬置支架振动是造成8阶啸叫噪声大的关键因素。为有效解决驱动电机8阶啸叫噪声问题,实施电机逆变器壳体结构优化及电机悬置支架安装动力吸振器优化措施,并搭载整车进行试验验证,最终有效解决驱动电机8阶啸叫噪声问题,提升了某纯电动汽车整车NVH性能品质的同时,为后续驱动电机NVH性能开发积累了宝贵经验。  相似文献   

5.
为了探究手动变速器齿轮啸叫问题,开展了道路试验、转毂试验以及传动系统台架试验,对啸叫问题进行多方位的分析。实验结果表明,以噪声总级与啮合阶次差值大于15dB(A)作为标准,可以判断各工况的啸叫情况,与主观感受基本一致;转毂半消声室和道路试验场均可以作为分析变速器啸叫问题的测试场地;在开展啮合斑点测试时,一次性完成全部挡位啮合斑点测试是可行的,通过优化台架测试方法,可以得到与整车测试相同的啮合斑点结果。本文所研究的变速器存在的啸叫问题,主要是由于二挡挡位齿轮啮合偏载、传递误差偏大引起,经过调整修形方案,啸叫现象明显改善。上述工作对解决同类问题具有一定指导意义。  相似文献   

6.
针对纯电动车在加速工况车内啸叫声大和滑行至20 km/h啸叫声突出的问题,通过“激励源-传递路径-接受者”分析模型,分析了电机啸叫原因和传递机理,根据试验诊断分析和工程经验快速锁定两个不同啸叫问题的主要贡献点。加速工况车内啸叫声大的关键因素是电机辐射噪声大,滑行工况啸叫声大关键因素是后悬置支架共振。从传递路径方面着手,提出了电驱动加声学包裹和后悬置支架加强的优化方案。通过优化方案的对比试验分析,高效地确定可工程化的优化整改方案,有效解决车内电机啸叫声问题。该优化方案和分析思路,对其他车型电驱动啸叫问题的解决具有较好的指导意义。  相似文献   

7.
随着国内乘用车市场的日趋成熟,用户对NVH性能的要求也在不断提高。变速器啸叫噪声作为一种比较容易被主观识别的单一频率噪声,是影响乘坐舒适性的主要因素之一。文章以某六速手动机械变速器为研究对象,首先进行整车NVH噪声测试,利用阶次分析确定了啸叫特征阶次,然后借助ROMAX仿真软件对齿形齿向修形进行仿真分析,通过优化齿轮设计参数,降低齿轮传递误差,使该变速器啸叫问题得以改善。  相似文献   

8.
本文中对加速车内噪声的粗糙感进行了分析和改进。首先通过对加速车内噪声频谱特性的分析,确定了半阶次噪声是引起车内噪声粗糙感的主要原因。接着对可能的传递路径进行了排查,结果表明车内的半阶次噪声主要来自于动力总成的振动,并通过变速器悬置侧支架传递到车内。最后采用了降低动力总成悬置刚度和提高悬置支架动刚度的方案,有效减小了车内噪声的粗糙感,提高了整车加速噪声品质。  相似文献   

9.
某轻卡车型在开发过程中,发现在高速行驶时车内有明显的嗡嗡声,尤其在4、5挡车速60?90 km/h时感受最明显,严重影响主观感受。经过一系列振动噪声测试,通过滤波、回放、阶次分析等试验方法,最终明确该异音是由于主减速器与传动轴的啮合所产生的。通过对齿轮修型调整主减速器与传动轴啮合齿的间隙,最终问题得以解决。  相似文献   

10.
针对某车型开发过程中车内异常噪声问题进行了试验分析,确定了发动机支承为该车辆车内异常噪声的主要来源,识别出异常噪声向车内传递的传递途径,并对发动机支承进行了优化.试验结果表明,优化支承使车内右后座位处500 Hz附近的声压敏感度峰值降为原来的50%;倍频带噪声级下降了约3 dB;主观评价显示该异常噪声得到了明显改善.  相似文献   

11.
为降低电动汽车减速器的啸叫噪声,采用齿形修形和齿向修形相结合的齿面修形法,并提出了一种齿轮传递误差和齿面接触应力双目标函数优化模型,对修形参数进行优化。结果表明:采用优化后修形参数进行修形后,电动汽车双级减速器的高速和低速齿轮副的传递误差最大变化量分别降至0.15和0.48μm;最大齿面接触应力分别为700和980MPa,达到了降低传递误差和改善齿面接触应力的预期目标。最后,将减速器安装在整车上进行齿轮优化修形前后的噪声声压级对比测试,结果表明:经齿面优化修形后,驾驶员右耳处噪声声压级峰值降低了7.3d B,啸叫噪声得到了有效控制。  相似文献   

12.
为有效评价加速行驶车内噪声线性度,建立了一种基于客观参数的回归模型。首先以18款市场主流车型的加速行驶车内噪声主客观试验结果为研究对象,通过最小二乘法对客观试验结果进行一元线性回归拟合,计算出最大偏差、平均绝对偏差和确定系数三项线性度评价参数,然后基于加速车内噪声线性度主观评价结果,构建出主客观回归模型。最后以某C级SUV加速行驶车内噪声线性度优化案例,证明了该方法的有效性及合理性。  相似文献   

13.
汽车后桥异响噪声是汽车常见噪声之一,影响乘客的乘坐舒适性。文章通过测试某汽车的啸叫噪声,将测量数据中的某一阶次噪声与总噪声的频率曲线进行对比,从而寻找后桥异响产生的原因。最终查明该异响噪声源由主减速器齿轮啮合噪声产生。为运用NVH测试方法查找汽车后桥噪声源,优化汽车NVH性能提供了依据。  相似文献   

14.
金属带式CVT在传递转矩时,会在主动和被动带轮轴间产生轴间作用力,使被动带轮轴发生变形,影响被动带轮轴齿轮与中间轴齿轮的啮合,产生偏载,增大齿轮间的传递误差,从而加大变速器的啸叫噪声。本文中以某款金属带式CVT为研究对象,对其进行动力学分析,并通过仿真和试验,分析验证了金属带张紧力对变速器啸叫噪声的影响,同时,以最小化系统变形和齿面载荷密度为目标函数,采用基于遗传算法的多目标优化算法对该齿轮副齿轮的修形参数进行优化。结果表明,金属带张紧力引起的轴间作用力对被动带轮轴齿轮和中间轴齿轮的偏载情况影响较大,它增强了变速器加速过程中的啸叫噪声,而优化后的齿轮,降低了变速器的啸叫噪声,提高了变速器的声品质。  相似文献   

15.
文章以某SUV车型在发动机低转速行驶时液压助力转向系统出现明显"呜呜"啸叫噪声问题为例。采用断开排除、滤波分析和阶次切片分析方法确定了转向油壶安装支架和转向高压油管管夹隔震不足为噪声传递的主要路径。通过优化油壶安装支架和转向高压油管隔震管夹降低结构振动激励,有效降低啸叫10.6dB(A),主观车内HPS噪声达到7.0分水平。  相似文献   

16.
针对某款乘用车小油门加速过程中车内噪声粗糙感明显的声品质问题,首先对噪声时域数据进行频谱特性分析,得到造成噪声粗糙感明显的原因是车内半阶次声压幅值调制。其次通过传递路径试验分析,确定车内半阶次激励源是发动机半阶次振动,主要传递路径是动力总成悬置。最后通过提高前围隔音量,优化悬置刚度及降低空调管隔振垫硬度,明显降低了车内噪声的半阶次特征,加速声品质得到有效改善。  相似文献   

17.
某轻型货车主观评价三挡加速噪声时,发现该噪声存在闷音和“呜呜”声,声音品质不佳,主观评价不可接受。为此,测试了三挡加速噪声,并分析噪声特征,发现噪声在170 Hz时存在共振。进一步测试分析,得知该共振噪声由传动轴共振导致。通过修改传动轴共振频率,该共振噪声消失,主观评价接受。研究发现车内“呜呜”声的噪声频率主要为700~800 Hz,随转速升高,“呜呜”声频率变大。通过排查可知,车内“呜呜”声是增压器次同步噪声,于是更换增压器浮动轴承和改善油膜间隙,减低增压器次同步噪声,问题最终得到改善,主观评价可以接受。  相似文献   

18.
本文针对某纯电动适时四驱车带脱开机构的前置减速器噪声,提出了“断续啸叫”概念,结合减速器结构分析了造成断续啸叫的原因,提出了减小大齿轮端面跳动公差、调整中间轴大齿轮径向安装间隙、减小同步器结合齿与齿套侧隙及大齿轮做动平衡的改善方案。最后根据各改善方案效果,结合量产工艺水平,提出了解决断续啸叫的最终方案,实车测试证明方案有效,对解决相似啸叫问题具有重要参考价值。  相似文献   

19.
针对某款SUV变速器啸叫噪声,采用阶次分析法辨识出主要噪声源齿轮组,利用Romax Designer软件建立仿真模型,对齿面进行微观修形,减小传递误差;通过实车采集优化前后的样车噪声进行对比,变速器啸叫噪声最高降低13 d B(A)。  相似文献   

20.
以9种B级轿车从50→120 km/h加速时的噪声信号为评价对象,采用等级评分方法对车内噪声品质烦躁度进行了主观评价试验.分析计算了各噪声样本的主要心理声学客观参数,并通过相关分析和多元线性回归分析,建立了车内噪声品质烦躁度评价的数学模型.结果表明,在加速工况下影响B级轿车车内噪声品质烦躁度的3个参数分别为响度、粗糙度和A计权声压级.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号