首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
文章结合驾驶人视距模型对辅助减速车道字体、版面进行合理化设计,以提高驾驶人的辨识程度;通过驾驶员认知特性对辅助减速车道标志前置距离设计进行研究,为辅助减速车道合理化利用提供可能,降低了由于车辆自动失效后因错过辅助减速车道强制减速造成重大交通事故的可能。  相似文献   

2.
目前重型货车在下长大坡路段持续制动极易引起行车安全问题,在长大下坡路段增设辅助减速车道,在一定程度上可缓解下坡安全问题。通过理论研究行车制动器自动过程中温度变化模型,以制动器热衰退临街温度为阈值确定下坡安全距离,以此分析确定辅助减速车道的位置设置合理区间。首先对发动机制动和电涡流缓速器联合作用下对重型汽车进行下坡能力分析,通过对行车制动器安全温度阈值内的汽车安全下坡距离的研究,确定不同坡度下车辆下坡行驶安全距离,得到下坡安全距离最长坡长为10km左右,基于此确定辅助减速车道的设定位置。  相似文献   

3.
目前重型货车在下长大坡路段持续制动极易引起行车安全问题。本文提出在长大下坡路段增设辅助减速车道,在一定程度上可缓解下坡压力。因此,引入温升模型,计算车辆下坡失速模型,确定下坡安全距离,以此为缓速车道设计提供依据。首先对发动机制动和电涡流缓速器联合作用下对重型汽车下坡进行研究。其次根据车辆系统动力学,进行汽车下坡能力分析。结合对汽车在制动鼓安全温度阈值内的汽车安全下坡距离的研究,得到下坡安全距离最长坡长为10 km左右,行驶坡度平均范围为3%~7%。基于此确定辅助减速车道的设定位置。  相似文献   

4.
文章针对重型汽车在长大下坡路段的行驶安全问题,对辅助减速车道的设计进行研究。根据排气制动和液力缓速器联合制动的行驶模型,对重型车辆在长大下坡路段的下坡能力进行研究。根据下坡时制动器的温升模型,研究长大下坡路段的辅助减速车道位置设计问题。  相似文献   

5.
《公路》2017,(6)
以高速公路互通式立交主线同侧连续合流形式为研究对象,通过对大小型车的加速特性进行分析,并基于可插入间隙理论,确定了不同匝道车道数车辆汇入主线的加速车道模型;然后通过分析驾驶员操作规律,考虑反应距离、决策距离、换道或减速距离3个方面的需求,建立了主线车辆与下游匝道汇入车辆间安全视距模型;最后确定以小型车为研究对象的加速车道长度值与换道模型确定的安全视距值之和,建立高速公路主线同侧连续入口最小间距计算模型,并提出了基于主线和匝道设计速度、入口匝道车道数的高速公路主线同侧连续入口最小间距指标值。研究成果是对我国有关规范和设计细则的完善和补充。  相似文献   

6.
本文以车辆行驶时的车道变换理论和在减速车道上的二次减速理论为基础,确定隧道出口到服务区间距的计算模型,得出两者距离的最小值,将结果利用VISSIM进行仿真评价。对于小间距的路段进行修正,进而确定隧道出口到服务区的最小合理间距。  相似文献   

7.
针对我国《公路路线设计规范》(JTGD20-2006)中互通式立交减速车道最小长度取值不合理的问题,通过国内外资料调查和互通式立交分流区车辆运行数据调查,研究主线设计速度为120 km/h的高速公路互通式立交分流区驶出车辆的分流位置和减速特性.基于二次减速理论并考虑三角渐变段长度建立互通式立交减速车道长度计算模型,通过调查数据统计和国内外研究分析确定模型中分流点初速度、分流鼻速度和两次减速度等关键参数取值.利用上述模型对减速车道长度取值的合理性进行了分析,并给出了对应不同匝道设计速度的减速车道长度建议值.其研究方法和计算模型可用于不同设计速度的高速公路减速车道长度的确定,而进一步的调查和计算结果可以作为现行《规范》的补充.  相似文献   

8.
针对城市快速路出口减速车道设置不合理,高峰期间引起交通冲突增加影响交通安全的问题,通过交通流波动理论对城市快速路分流区减速车道交通冲突产生机理展开研究。分析交通集结波的产生对交通冲突的影响及减速车道长度的关系,通过公式推导计算出交通流波集散时间及集结波长度。为了避免集结波发生的概率及排队长度,应该由高峰时段车流流量、车流速度和密度来确定。以西安市南二环城市快速路为例,使用VIP/T视频交通检测模块对减速车道交通流平峰和高峰时段车道的车流量、车流密度、车头间距和车道占有率进行数据统计及分析,通过研究发现高峰时段城市快速路交通冲突的发生与车流量、车流速度和密度有正相关关系,减速车道的长度可由高峰时段车流量、集结波波速和车流密度确定,同时兼顾排队长度。通过计算,南二环的减速车道长度为188m比目前的实际长40m。  相似文献   

9.
文章根据车辆在减速过程中的行驶特征,分析了国内互通立交减速车道平面线形设计所存在的问题,提出主线减速段和匝道减速段的概念,明确了减速车道的界定,给出了减速车道长度的计算方法和取值表,并阐明了减速车道平面线形设计要点。  相似文献   

10.
城市快速路互通立交最小间距   总被引:3,自引:0,他引:3  
为了得到符合我国交通流特性的城市快速路互通立交最小间距,实现城市快速路的安全高效运行,首先对城市快速路互通立交间距的组成要素进行了分析,将其分为加速车道长度、两立交净距和减速车道长度3部分;然后以概率论和微分法相结合的思想,结合主线交通量对加速车道长度进行了研究;以概率论和微分法相结合的思想,结合交通标志的位置设置对互通立交净距进行了研究;运用动力学原理并结合驾驶员的驾驶舒适度对减速车道长度进行了研究。从而得到了城市快速路互通立交最小间距模型。最后计算得到符合我国实际的城市快速路互通立交最小间距值。  相似文献   

11.
高速公路出匝分流区超车道车辆车道变换模型   总被引:1,自引:0,他引:1  
为了获取高速公路出匝分流区车辆的变道运行规律,利用DV和数据采集仪对广东多条高速路多个出匝分流区上出匝车辆车道变换行为的特征数据进行了大量调查.从调查数据中,分析出车道变换特性,结合数理统计理论,应用微分法建立了出匝车辆的变道模型.该模型与调查数据拟合结果吻合,并揭示了整个出匝变道过程及交通流量对变道行为的影响.Matlab编程显示:交通流量适中时,行驶距离不超过400 m便会变道成功;交通流量大时,驾驶员应该提前变道至行车道或减速车道,为高速路规划设计、指路标志设置和安全引导驾驶提供有力理论依据.  相似文献   

12.
孙超  寇越  田林 《交通科技》2020,(2):106-109
为探究城市道路行车轨迹与路侧之间的横向距离对车辆运行的影响,提高驾驶员行车安全,在某市滨海路进行汽车运行轨迹样本采集试验,使用AxleLight RLU11系列路侧交通数据采集系统分车道采集试验路段汽车运行轨迹样本,利用SPSS Statistics对试验路段不同车道车辆运行轨迹样本进行数据处理,绘制不同行车道运行车辆横向距离的累积频率曲线,计算得到汽车运行轨迹与路侧的横向距离D85,通过绘制行驶车辆距路侧的横向距离直方图,得到不同车道的车辆分布规律。结果显示,驾驶员大多数偏向选择在内侧车道运行。根据试验路段内外2条车道车辆横向距离和运行轨迹特性,可为城市道路交通安全设施的设置提供理论依据,以期提高城市道路交通运行安全。  相似文献   

13.
张强  申波 《公路》2024,(1):282-285
基于驾驶人动视觉特性以及视觉错觉特性,综合现有驾驶员视觉的相关特性以及目前的减速标线研究现状和有关规程、规范,在此基础上设计了一种改进优化的视错觉控速标线,通过UC-win/Road软件和模拟驾驶对驾驶人开展了室内仿真驾驶,对减速效果进行评价。新型视错觉标线可以对驾驶人造成车速增加和车道变窄的错觉,控速效果较好。  相似文献   

14.
简述了避险车道的研究现状,分析了避险车道存在的问题,提出了减速下坡车道的措施。基于车辆下坡运行阻力,研究了减速下坡车道的设置位置、长度、路面材料、料坑深度、车道宽度、入口速度、养护及相应交通工程措施等,并通过试验分析验证,结果表明减速下坡车道避免了避险车道的诸多弊端,对长大下坡失控车辆的速度控制起到了很好的作用。  相似文献   

15.
结合郑州南三环东延线工程,对平行匝道的布设进行了探讨。阐述了该工程中的平行匝道设计原则与思路,介绍了该工程匝道布设位置、布置间距、加减速车道及匝道与交叉口距离等设计要点,为城市类似立交工程的设计提供方法和经验。  相似文献   

16.
根据公路运行速度快、大货车比例相对较高的特点,该文从视距、大车转弯特点以及平交口进口延误3个方面对公路X形平交口的通行安全性以及通行效率进行分析。重点对不同的交叉角度下平交口视距三角区与驾驶员视角的关系、大车转弯半径与车道宽度及车速的关系、在钝角及锐角象限交通岛以及减速车道的设置等问题上进行了深入分析,在此基础上,对X形平交口的渠化、交通组织管理方面,提出了次要道路减速让行、平交口范围速度控制、锐角象限设置右转车道及交通岛、钝角象限不设置交通岛以及在右转车道前应设置相应长度的减速车道等建议,以保证车辆在X形平交口内的行驶安全性及效率。  相似文献   

17.
为了研究城市地下道路分合流区的变速车道长度,利用先进的8自由度驾驶模拟平台构建三维驾驶模拟仿真环境并开展了驾驶模拟试验,采集了4种主线设计速度条件下、驾驶人在地下道路分合流区内的驾驶模拟试验数据。基于速度、加速度、方向盘转角和行车轨迹构建了一种驾驶行为分析方法,通过该方法分析了驾驶人在地下道路分合流区内的速度调整行为和车道变换行为,并总结其在速度调整区间和车道变换区间的分布规律,基于该分布规律得出地下道路变速车道长度的推荐值。结果表明:在分流区内,驾驶人调整速度和变换车道通常交叉进行,减速区间和换道区间往往部分重合甚至相互包含;而在合流区内,驾驶人通常在结束加速操作前开始变换车道。与熟练驾驶人相比,新手驾驶人在分流区内采取了更为激烈的减速措施,而在合流区内新手驾驶人通常需要更长的加速距离以寻找合适的汇入间隙。与公路及城市道路出入口变速车道规范长度相比,减速车道推荐长度满足公路相关标准规范的规定值,略高于城市地下道路的标准规定值,加速车道推荐长度高于公路及城市道路出入口标准规范的规定值,研究结果可为地下道路规划和设计工作提供参考。  相似文献   

18.
《公路》2021,(4)
为进一步促进连续流平面交叉(continuous flow intersection,CFI)的研究与应用,对其左转车道最小长度展开研究。首先,在明确CFI的交通组织方式后,根据CFI左转车道的几何特征和功能将其划分为左转引道、左转跨越段和移位左转车道等3段。其中,左转引道由渐变段和加宽段组成,横向跨越段纵向距离由跨越车道数和设计速度确定,移位左转车道最小长度由减速段和左转排队等候段两者中的较大值决定。其次,根据汽车横移渐变率和运动学方程分别计算渐变段和减速段长度;根据M/M/1单车道系统排队理论和交通流理论并结合既有研究成果确定排队等候段长度;根据圆形轨迹换道模型确定引道与移位左转车道之间的合理间距。最后,将3段长度建议值叠加,得到不同设计速度下CFI左转车道长度的合理取值。结果表明:设计速度对CFI左转车道的长度影响最大,车辆横向位移的影响次之。  相似文献   

19.
我国规范对变速车道长度进行了界定,但渐变段是否属于变速车道界定比较混乱,同时没有明确提出匝道车速、等待时间对变速车道长度的影响.通过对变速车道类型和驾驶行为分析,确定加速车道宜采用平行式,减速车道宜采用直接式.然后,根据驾驶员的驾驶行为和车辆在变速车道的速度变化,分别确定了平行式加速车道、直接式减速车道每一部分长度的计算方法,重点是利用移位负指数分布模型,推导了平行式加速车道等待段中车辆等待一个可插入间隙的平均等候时间.最后通过算例确定了主线和匝道在不同设计车速下的加、减速车道长度.该长度比现有规范中的参考值偏大,因为该变速车道长度考虑了三角渐变段长度,为相邻立交间距的确定奠定了基础.  相似文献   

20.
为了研究驾驶人在城市快速路匝道减速车道的驾驶行为及其风险特征,基于43名不同经验驾驶人的道路实验数据,提取了典型快速路出口减速车道共260 m的驾驶行为数据;采用统计方法分析了不同经验驾驶人的行车轨迹、进入减速车道的纵向位置、进入匝道时的车速、进入匝道时的横向位置,以及在典型断面上平均车速.通过分析数据发现,熟练驾驶人提前变道意识强于非熟练驾驶人,而这种提前变道行为对于尽早进入减速车道有正面作用;熟练驾驶人能更好地保持进入匝道时的横向位置,非熟练驾驶人则偏右;减速车道对熟练驾驶人和非熟练驾驶人的减速效果均不理想,非熟练驾驶人在减速车道上车速显著低于熟练驾驶人,但是所有驾驶人在出口匝道车速比限速值要高.研究结论可为城市快速路减速车道参数设计和交通安全管理提供理论基础.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号