首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对FSAE赛事规则及赛车整体性能需要,提出了FSAE赛车制动系统优化设计方案。优化了制动器参数,对制动系统关键零部件进行了轻量化设计及CAE分析,设计了满足性能、强度要求的制动系零部件,确定了赛车四轮同时抱死时的制动力分配比,最后通过对制动系统的调教与实车试验,赛车制动时能够达到四轮同时抱死的设计目标,对指导赛车制动系统的设计有一定的实际意义。  相似文献   

2.
制动性是衡量赛车性能的一个重要指标,制动系统设计的合理性关乎赛车的发挥以及车手的人身安全。文章基于FSAE比赛规则,以2017年江苏大学参赛赛车的制动系统为例,使用matlab软件确定制动设计时的基本参数,包括前、后制动盘有效半径,前、后管路液压,踏板行程,并且通过其工具箱优化计算制动力分配系数。最终结果证明,得到的所有基本参数较为可靠,减少了人工反复运算的计算量,满足系统要求,对赛车制动系统设计有一定的指导意义。  相似文献   

3.
在近几年中国大学生电动方程式赛车(FSEC)的比赛中,随着各所高校车队技术的不断更迭进步,比赛的成绩也在逐步攀升。在追求极致速度的同时,赛车的安全性能也成了不可忽视的问题,故赛车的制动系统设计非常重要。而整个制动系统的控制是通过车手踩制动踏板完成的,故文章主要对制动系统中制动踏板总成进行设计与分析。在满足大赛规则要求及所需的速度性能提升和轻量化设计理念等前提下,根据校车队2022赛季E39赛车整车参数,对制动踏板总成进行设计、建模,并运用Workbench进行仿真分析校核。  相似文献   

4.
ABS/EBD系统是如今极为重要且常见的主动安全装置,但在FSAE赛车上的应用极少。为了提高FSAE赛车的制动效能和制动稳定性,响应大学生方程式汽车大赛的创新性宗旨,吉林大学吉速电动方程式车队自主设计了适用于FSAE赛车的ABS/EBD系统。文章基于FSAE赛车设计了ABS系统的控制策略并搭建了控制模型,仿真试验表明所设计的控制策略进行取得了很好的效果,大大缩短了制动距离。  相似文献   

5.
赛车转向系统的设计对赛车转向行驶性能、操纵稳定性能都有较大影响。文章在赛车转向系统设计过程中,首先通过转向系统受力计算和UG草图功能进行运动分析,建立三维模型数据进行预装配,在软件上检查我们设计的转向系统是否存在干涉现象,检查转向系统是否满足设计要求,以便对我们的设计进行改进。  相似文献   

6.
本文提出了一套适用于FSC赛车制动系统的设计方法。选用简单液压盘式制动系统,并且加装平衡杆以调节制动器制动力分配系数。计算和分析表明,该制动系统能够满足比赛时动态测试的要求。  相似文献   

7.
对欧洲制动AMS试验的仿真实现方法进行了研究。选用特定车型,应用已有的Carsim悬架、轮胎等模型建立整车模型,通过改变制动系统模型进行仿真过程的标定。最后根据欧洲AMS制动试验方法设定了仿真工况,并进行了制动效能和制动热衰退性能的仿真分析。仿真分析结果表明:通过标定Carsim制动系统模型的AMS制动性能仿真结果与试验结果具备较好的一致性。研究表明在车辆设计初期利用Carsim软件可以快速准确地对车辆的制动性能进行仿真,从而对其性能做出预测和评估,并可有效地找到解决方案。  相似文献   

8.
为缩短重型越野汽车的制动响应时间,提高制动性能,设计了基于气压制动的电控制动系统(EBS)。依据目标车型的性能参数及EBS控制算法,以Matlab/Simulink为仿真平台,建立了目标车型的整车模型及控制算法模型。仿真研究了所设计的EBS系统在不同工况下的制动性能,并通过与常规ABS制动系统试验数据的对比,验证了系统设计的合理性。结果表明,所设计的EBS系统在减少制动响应时间和提高制动安全性方面具有明显的优势。  相似文献   

9.
针对长途客车行驶过程中频繁出现的由于制动性能而导致的安全隐患,为了进一步完善和提高车辆制动性能参数的设计效率,建立了长途客车整车动力学计算模型,制动系统动力学模型以及轮胎模型,并在Visual C++环境下编写了长途客车制动性能模拟计算系统,通过模拟计算分析获得长途客车制动过程中的制动性能参数及响应曲线,并判断其是否符合相关制动性标准,为制动性能的完善提供了可靠、有效的参考。  相似文献   

10.
建立了一种单轮车辆制动防抱死系统ABS的车辆模型,文中结合逻辑门限控制的方法,用Matlab对所建立的数学模型编制仿真程序,通过对制动过程的模拟仿真,探讨不同因素对ABS性能的影响,为汽车制动系统的设计开发提供参考。  相似文献   

11.
为了保证赛车车架的强度及刚度符合大学生方程式赛车比赛的规则以及赛车的加速、操控及安全性能要求,在CATIA中建立车架三维模型,将几何模型导入ANSYS Workbench中建立车架的有限元模型并进行有限元分析,计算出赛车车架在静态、弯曲、制动及转弯工况下的强度以及车架的扭转和弯曲刚度.在理论上保证了赛车车架的安全性要求,实际做出的车架最终安全地完成了2013年的中国大学生方程式汽车大赛.  相似文献   

12.
为了更好实现赛车的轻量化设计目标,针对制动踏板,利用拓扑优化的方法对制动踏板进行结构优化并重建模型,并与原始制动踏板做强度分析与疲劳分析的结果对比。结果表明,拓扑优化设计后的制动踏板,其变形量、应力分布均好于原始制动踏板,并且质量降低了22.1%,实现了轻量化设计目标,对赛车零部件设计思路具有一定的指导作用。  相似文献   

13.
通过多项式拟合和分段拟合建立了基于电机转矩与转速变化关系的两种电机模型,在此基础上,求解了电动汽车再生制动系统的动力学微分方程,并仿真计算了多路段组合情况下滚动阻力系数和附着系数对再生制动系统性能的影响.结果表明,存在一个最优路段组合使电动汽车制动系统制动时间最长、回收能量最多、速度减小最多.  相似文献   

14.
为实现电控制动,提出一种摩擦-电磁耦合制动系统及其制动模式切换控制算法。根据摩擦-电磁耦合制动系统结构,设计了耦合制动系统混杂控制模型,提出制动模式切换动态协调算法并对算法进行了改进。通过试验平台对控制算法和制动系统性能进行了仿真,结果表明,制动模式切换动态协调算法保证了耦合制动系统在制动模式切换时的稳定性,摩擦-电磁耦合制动系统制动性能良好,提高了制动舒适性。  相似文献   

15.
为了提高无人驾驶电动赛车制动的稳定性与可靠性,提出一种串联式线控制动方案。通过调整开关电磁阀选择赛车处于有人或无人的状态,在获取赛车最大减速度、平均减速度以及制动系统压强之后,通过增量式PID控制算法控制各个制动轮缸的制动压力,从而控制赛车车速,保证赛车在行驶安全的前提下按照预设路径稳定行驶。  相似文献   

16.
鉴于传统电子液压制动系统连续制动易产生"热衰退"现象,结构缺陷导致的制动响应慢,制动系统与电控系统衔接差等缺点,提出了一种基于混杂自动机模型的电磁与摩擦集成制动方法。首先分析集成制动器制动时的工作特点以及不同情况下对应的工作模式(纯电磁制动、纯摩擦制动以及集成制动),并确定3种制动模式的切换条件,通过逻辑门限算法将其实现。根据制动时车辆既具有连续运动状态又有离散状态的混杂特性,使用MATLAB/Stateflow建立基于制动模式切换系统的推广自动机模型,并根据制动模式切换控制策略,对3种制动模式切换进行试验,验证制动模式切换控制策略的合理性。最后选取车辆制动初速度为28 m·s-1的直线制动工况,分别在高附着系数(0.85)以及低附着系数(0.3)的路面条件下,通过试验平台对控制算法和制动系统性能进行试验验证。研究结果表明:所提出的汽车混杂理论模型以及优化方法在在低附着系数(0.3)路面条件下,集成制动方法较传统液压制动系统缩短5.12%的制动距离,缩短制动时间0.3 s;在高附着系数(0.85)路面条件下,集成制动方法较传统液压制动系统缩短5.66%的制动距离,缩短制动时间0.2 s,能有效提高制动效能。  相似文献   

17.
在汽车防抱死制动系统(ABS)开发过程中,需要通过大量的实车试验完成参数标定以保证产品性能和鲁棒性。对于缩短开发周期而言,在设计阶段基于模型实现ABS控制算法的标定和迭代优化具有重要价值。本文建立了包含平面内SWIFT轮胎模型在内的四分之一车辆模型,建立了防抱死制动系统模型并设计了基于规则的逻辑门限ABS控制算法,并基于该平台验证了ABS控制算法的合理性。  相似文献   

18.
为提高半挂汽车列车主动安全性能,建立了一套半挂汽车列车主动气压制动控制系统。设计了一套能与半挂汽车列车传统气压制动系统兼容的主动气压制动执行机构,搭建了相应的硬件系统;建立了系统增、减压模型和电磁阀开关过程模型;利用实验数据,采用粒子群算法对模型参数进行了辨识;在此基础上,建立了基于模型的主动气压制动控制策略,并进行了测试验证。结果表明,提出的半挂汽车列车主动气压制动控制系统能实现精确的主动气压制动控制。  相似文献   

19.
为支持制动主缸方案设计和制动系统选型,描述了目前轿车上使用的柱塞式串联制动主缸的内部结构、工作原理和性能优势,基于AMESim建立了某款柱塞式串联制动主缸的详细物理结构模型,模型中考虑了阀特性、弹簧刚度、摩擦力、间隙和静压源等影响因素,通过与台架试验结果进行对比,验证了模型的有效性。对主缸建压特性、两腔压力差及空行程进行敏感度分析,提出了制动主缸设计要求。  相似文献   

20.
基于电动赛车具有再生制动的优势,提出一种基于并联策略的电液复合再生制动力分配方法。在理想制动力分配曲线、ECE制动法规、赛车轮胎及行驶路面条件解算出制动力分配系数β,从而对赛车摩擦制动力与再生制动力进行合理的比例分配,在不同的制动强度区间采用不同的制动方式,达到制动效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号