首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
以某重型载货汽车驾驶室悬置系统为例,通过实车道路试验,研究了单高度阀前液压后气囊悬置、单高度阀四气囊悬置和双高度阀四气囊悬置等减振系统的振动特性及对车辆行驶平顺性的影响规律,并对试验结果进行了频域处理和分析.试验结果表明,双高度阀控制的四气囊驾驶室悬置系统的平顺性优于其它2种结构的悬置系统.  相似文献   

2.
基于ADAMS软件,建立了某全浮式驾驶室重型卡车的整车非线性多体动力学系统模型,模型考虑了驾驶室悬置、前后悬架、转向系统、动力总成、稳定杆及附件的详细几何结构参数,以及连接处的橡胶衬套、弹簧及阻尼器的非线性特性,轮胎采用Magic Formula模型。最后利用所设计的系统对该车进行了平顺性仿真,结果表明驾驶室悬置系统能够有效地改善整车平顺性。  相似文献   

3.
基于ADAMS软件,建立了某全浮式驾驶室重型卡车的整车非线性多体动力学系统模型,模型考虑了驾驶室悬置、前后悬架、转向系统、动力总成、稳定杆及附件的详细几何结构参数,以及连接处的橡胶衬套、弹簧及阻尼器的非线性特性,轮胎采用Magic Formula模型。最后利用所设计的系统对该车进行了平顺性仿真,结果表明驾驶室悬置系统能够有效地改善整车平顺性。  相似文献   

4.
驾驶室空气悬架的高度阀控制方式 为了提高驾驶室的舒适性,高端的商用车驾驶室采用空气悬架的方式来实现平顺性和舒适性的提升,其空气悬架的控制方式一般采用传统的机械方式来控制,即驾驶室高度阀控制,通过设计高度阀的行程一流量特性曲线来控制气源到空气气囊的空气流量,从而控制空气悬架的高度维持不变。驾驶室高度阀的安装位置如图1所示,当路面不平度发生较大变化时,  相似文献   

5.
驾驶室悬置系统对提高货车的平顺性和舒适性有着重要的作用。文章首先介绍驾驶室悬置系统的研究现状,然后介绍了悬置系统的结构与作用,最后对刚度可调驾驶室悬置系统的发展进行了展望。  相似文献   

6.
针对德龙F3000牵引车驾驶室前悬置高度阀装配故障,对所有故障现象进行调查分析,重点针对高度阀调节失效的主要故障现象,分析故障发生机理,制定解决措施,以避免驾驶室前悬置高度阀装配故障重复发生。  相似文献   

7.
驾驶室悬置系统对提高车辆的平顺性和舒适性有着重要作用。为解决某重型卡车驾驶室悬置售前及售后的异响问题,基于20余年的质量管理工作经验,通过运用质量工具,采用线下、线上及路试验证,售后跟踪等措施,找出问题频发的根本原因,针对不同问题制定改进措施,并进行验证。实践证明措施有效,此方法可供相关人员借鉴。  相似文献   

8.
本文针对F3000牵引车驾驶室前悬置高度阀调节失效、气囊无法正常工作问题,通过分析高度阀调节原理及高度阀气囊结构,设计高度阀装配专用工装、标识气囊进气管和出气管颜色,使装配技术标准得到规范,从而解决了牵引车驾驶室前悬置高度阀调节失效和气囊无法正常工作。  相似文献   

9.
以某轻型载货汽车驾驶室悬置系统为研究对象进行道路试验,并建立了3自由度驾驶室悬置系统的ADAMS模型。对比仿真与试验结果发现,该驾驶室前、后悬置共振频率吻合,第3阶固有频率处于共振频率范围内,为此提出了将后悬置垂向刚度降低20%的优化方案。道路试验结果表明,在不同车速下,优化后的驾驶员座椅处加速度均方根值均降低,驾驶室舒适性得到较大改善。  相似文献   

10.
针对某厂商自主研制的自卸车存在乘坐舒适性较差的问题,采用试验设计技术与响应面法相结合的方法对其驾驶室悬置系统参数进行优化。首先,在有限元软件HyperWorks中对驾驶室进行模态分析,采用ADAMS软件建立驾驶室悬置系统的刚柔耦合多体动力学模型;接着,对实车工地路试采集的振动数据进行分析;最后,以驾驶室悬置系统的弹簧刚度和减振阻尼为试验因子,以驾驶室座椅地板处的振动加速度的最大幅值的最小化为优化目标,运用响应面法对悬置系统的参数进行优化。结果表明,优化后驾驶室的振动明显减弱,提高了车辆的乘坐舒适性。  相似文献   

11.
以某重型商用车驾驶室悬置系统为例,通过实车道路试验,研究了四弹簧,四气囊悬置减振系统的振动特性在A级路面和B级路面对车辆行驶平顺性的影响规律。试验结果表明,四气囊驾驶室悬置系统的平顺性整体优于四弹簧驾驶室悬置结构。  相似文献   

12.
针对某重型卡车驾驶室后悬置抗侧倾性能差的问题,在原结构的基础上,确保安装结构基本不变,运用CATIA三维软件和HyperWorks软件分别完成三维模型绘制和静强度分析。通过分析结果比对,改进方案比原方案最大位移减小约18%,最大应力减小约45%,实现该款驾驶室后悬置支架增强刚度、提升抗侧倾性能的要求,提高了舒适性和安全性。  相似文献   

13.
针对某中型载货车在35km/h~40km/h车速附近出现的驾驶室异常共振问题,进行了道路试验,采集驾驶室内与驾驶室悬置周边位置处的振动加速度信号。通过驾驶员总加权加速度均方根值对载货车的乘坐舒适性进行了客观评价,结果表明驾驶室振动异常,乘坐舒适性能很差;通过悬架、驾驶室悬置传递函数的计算与分析,发现驾驶室后左悬置对车桥传递至驾驶室的低频振动起到极大的放大作用,是驾驶室内产生异常共振的主要原因。更换驾驶室后左悬置后,该车速段内的异常共振问题已消除。  相似文献   

14.
结合整车对全浮式驾驶室悬置系统的总体要求,利用理论计算、动力学仿真、有限元分析等方法进行各种工况模拟以及悬置性能分析,确保悬置系统各方面满足设计要求。实际样车在不同路况、速度下验证了悬置系统隔振率、平顺性、可靠性满足设计要求。通过对设计过程的总结,形成了一套驾驶室悬置系统设计方法、明确了性能评价指标和相关试验要求。  相似文献   

15.
笔者曾在此前多个文献中分别研究了半挂牵引车全浮式驾驶室悬置系统平顺性和悬置参数优化性问题,并进行了驾驶室悬置系统刚柔性限位能力分析,为全浮式驾驶室悬置系统设计提供了有意义的参考。驾驶室悬置弹簧在一些特殊情况下可能会存在失效的可能,项目委托企业需要了解在悬置系统失效的情况下驾驶室的安全性问题。因此,本文面向驾驶室安全性问题建立了全浮式驾驶室主体结构非线性有限元分析模型,并分别针对驾驶室后悬置失效、前悬置失效和模拟跌落冲击的情况,对驾驶室进行了动态仿真分析,得到了结构的应力和变形,分析了结构失效的部位和形式,并提出了改进设计建议,为企业掌握其产品的安全性能提供了所需的参考。  相似文献   

16.
新型全浮式驾驶室空气悬架在重型汽车上的应用   总被引:1,自引:0,他引:1  
随着重型车技术的不断升级,如何提高驾驶员的乘坐舒适性、减轻驾驶员的疲劳强度、提高车辆的安全性已经成为设计者考虑的重要因素。目前,在欧洲重型汽车上已经广泛采用了包含空气弹簧的空气悬架和全四点振动悬置的新方法。本文介绍一种新的驾驶室悬架形式——新型全浮式驾驶室空气悬架,并通过仿真分析说明了这种新悬架的优势。与传统驾驶室悬架比较,该悬架不仅可有效提高驾驶员的乘坐舒适性,而且可提高驾驶室的碰撞安全性及减小驾驶室悬置点的动载荷。重型汽车悬架系统是一个复杂的⑸允许驾驶室有一定的倾斜(驾驶室在发动机上,货车独有的特…  相似文献   

17.
一、空气弹簧概况 空气弹簧除了在汽车悬架上广泛使用外,还在汽车座椅、驾驶室悬置、导向装置、工业等方面广泛应用。 座椅空气弹簧总高度低,它可提供良好的乘坐舒适性,负荷能力可达4kN。 驾驶室空气弹簧刚度适合,可提供良好的驾驶室工作条件,负荷能力  相似文献   

18.
针对卡车平顺控制问题,文章阐述了平顺性产生的机理,同时对影响平顺性的要素车胎、板簧、减震器、驾驶室、驾驶室悬置及座椅等进行了分析,提出需要控制的关键参数。在传递路径上,从承载系统及车身系统两个方面,对其设计频率要求及模态分布进行了分析,提出了不同频段设计的要求。最后结合某轻卡出现中速中频段抖动的实际问题,根据中频段问题的解决思路,提出了解决方法,从解决结果来看,通过相关参数控制能有效解决卡车平顺性问题。  相似文献   

19.
驾驶室后悬置系统是固定驾驶室与车架,实现支撑驾驶室和衰减震动的重要组成部分。后悬支架总成是驾驶室后悬置的重要连接部件,其结构强度关乎车辆安全运行问题。文章利用有限元分析软件Hyperworks对某重型卡车驾驶室后悬支架总成进行了多工况分析,验证了其结构强度要求;采用高强度钢减薄的优化方法,在满足结构强度要求的同时实现了结构的轻量化。  相似文献   

20.
驾驶室前悬置系统是驾驶室与车架的固定,实现支撑驾驶室、驾驶室翻转和衰减振动的重要组成部分。支座及托架是驾驶室前悬置的重要连接部件,其结构强度关乎车辆运行、支撑和固定驾驶室的安全问题。文章利用有限元分析软件Hyperworks对某重型卡车驾驶室前悬支架及托架进行了多工况分析,验证其结构强度要求;采用压铸铝替代精铸钢,在满足结构强度要求的同时实现了结构的轻量化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号