首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
针对无人车路径跟踪过程中跟踪效果与车辆稳定性这一多目标控制问题,基于分层控制理论提出了一种分布式驱动无人车辆路径跟踪与稳定性协调控制策略。建立了车辆动力学模型和路径跟踪模型,利用滑模控制方法设计了上层控制器,旨在减小路径跟踪过程中的航向偏差和横向偏差的同时确保车辆自身的稳定性。在下层控制器中,设计了一种四轮轮胎力优化分配方法,根据上层控制器需求,结合车辆横摆与侧倾稳定性情况,实现四轮轮胎力的定向控制分配。基于CarSim和Simulink搭建了联合仿真模型并进行仿真实验,结果表明,提出的协调控制策略能够有效地控制车辆路径跟踪中的航向偏差和横向偏差,同时确保车辆的侧倾与横向稳定性。  相似文献   

2.
路径跟随是依照规划轨迹信息通过对执行元件的控制实现沿期望轨迹行驶,控制算法对实现路径跟随非常重要。针对自动驾驶车辆的侧向控制技术,文章研究了基于最优预瞄理论的路径跟随控制,建立车辆二自由度模型和预瞄误差模型,设计模型预测控制(MPC)侧向跟随控制器以提高跟随精度。利用CarSim-Simulink联合仿真,仿真结果表明,该算法策略能稳定跟踪规划路径。  相似文献   

3.
为解决智能车辆在车道变换过程中的路径规划和路径跟踪问题,首先,利用梯形加速度法设计了车道变换虚拟理想轨迹,该路径规划方法的适应性取决于车道变换时间、横向加速度及变化率等关键变量的约束条件,因而对各关键变量之间的数学关系进行了定量计算,并绘制了不同工况下的车道变换虚拟理想轨迹,用于分析各关键变量对路径规划的影响;其次,建立了线性离散的车辆动力学预测模型,综合分析了车辆模型的控制输入、状态变量以及道路结构参数等约束条件,构建了多约束模型预测控制(MMPC)系统用于车道变换路径跟踪,并基于Hildreth二次规划算法对其目标函数进行了求解,获得前轮转向角控制量,从而保证智能车辆在车道变换过程中的路径跟踪性能及操纵稳定性能;最后,利用MATLAB和Carsim软件对提出的多约束模型预测控制系统进行联合仿真,并构建单约束模型预测控制(SMPC)系统与其进行性能比较,分别对车道变换时间为3 s和6 s时的车道变换性能进行比较分析。结果表明:当车道变换时间为6 s时,2种控制系统都能较好地实现车道变换功能;当车道变换时间为3 s时,与SMPC控制系统相比较,MMPC控制系统能够在有效跟踪期望行驶路径的同时改善车辆的操纵稳定性,从而提高车辆在路径跟踪过程中的主动安全性能。  相似文献   

4.
文章建立车辆二自由度运动学模型,并将车辆二自由度运动微分方程离散化、线性化,设计了一种基于模型预测算法的轨迹跟踪控制器,并且在实验的基础上制定合理的约束函数和控制规则,从而兼顾路径跟踪的准确性和车辆的稳定性。采用CarsimSimulink平台对算法进行仿真验证,结果表明基于模型预测控制的轨迹跟踪控制器在5m/s以下时能够较好地跟踪预设轨迹。  相似文献   

5.
《汽车工程》2021,43(8)
现有的铰接车辆路径跟踪控制方法在模型线性化和预瞄误差过程均产生较大误差,导致跟踪精度降低。针对铰接车辆路径跟踪控制,构建了铰接车辆动力学模型,采用基于状态轨迹的线性化方法补偿动力学误差,提出了考虑路径多点预瞄误差的控制目标,设计了基于动力学模型的模型预测控制器,用以优化铰接点处转向力矩。为验证该方法的有效性,采用Matlab/Simulink和Adams软件构建了联合仿真平台,对控制算法进行了仿真验证。仿真结果表明,本文中设计的控制器可有效提升铰接车辆路径跟踪精度。  相似文献   

6.
针对紧急避让工况,提出一种基于曲率控制的路径跟踪控制方法。以车辆二自由度动力学模型为基础,设计基于曲率控制的二阶自抗扰路径跟踪控制器,采用前馈与反馈相结合的复合控制方法进行曲率跟踪控制。为了解决避让过程中侧向加速度过大或产生阶跃、曲率不连续问题,引入三次B样条曲线进行路径跟踪曲率规划,采用CarSim/Simulink联合仿真方法进行控制器性能验证。仿真结果表明,在对接和对开路面工况下,基于曲率控制的路径跟踪控制器能够保证车辆实际行驶路径曲率跟踪理想路径曲率,抵抗外界干扰能力强。  相似文献   

7.
针对人机共驾车辆路径跟踪控制精度和车辆稳定性难以有效保障的问题,提出一种集成控制策略,包括主动前轮转向系统(AFS)可变传动比曲线和基于模型预测控制(MPC)的路径跟踪控制器。针对稳定性控制,构建考虑路面附着条件和车速的AFS可变传动比函数,用于保证车辆路径跟踪过程中的安全性和横向稳定性;针对路径跟踪控制,设计基于MPC的路径跟踪控制器,用于跟踪目标路径;搭建了基于Carsim/Matlab的联合仿真平台并进行仿真验证。结果表明:集成控制策略可以有效改善人机共驾车辆的操作稳定性,显著提高了车辆的跟踪性能,削弱了驾驶员驾驶状态波动对车辆行驶安全的影响。  相似文献   

8.
针对四轮独立驱动电动汽车具有结构参数、外部干扰不确定性与非线性和过驱动等特征,提出了一种分层控制框架,以实现前轮转向与直接横摆力矩控制系统协同的车辆路径跟踪控制。首先,基于路径跟踪运动学模型,将车辆的路径跟踪问题转化为约束跟随问题;其次,设计了基于约束跟随的自适应鲁棒上层控制算法,该方法可以有效处理由模型不确定性和外部干扰引起的失配问题,并保证闭环系统的一致有界性和一致最终有界性;最后,设计了一种基于二次规划的下层分配算法满足所需的直接横摆力矩,并在Simulink-Carsim平台进行联合仿真。通过不同工况的仿真结果表明,所设计的自适应鲁棒控制算法具有良好的路径跟踪精度和鲁棒性。  相似文献   

9.
针对无人驾驶车辆路径跟踪过程中横摆和侧向稳定性控制,提出一种转向和制动的模型预测控制方案。控制方法基于3自由度车辆模型,控制目标是通过制动和转向的联合来跟踪期望路径。该控制方案依赖于非线性预测控制方法的预测功能,搭建基于MPC(Model Predictive Control,模型预测控制)的车辆主动转向和制动控制系统。通过Car Sim和Simulink联合仿真试验进行验证,证明所提出方法的有效性。  相似文献   

10.
智能车主要分为路径规划、路径跟踪、自动泊车三大部分。路径规划主要研究车辆的避障问题,路径跟踪主要研究车辆跟随期望路径的有效性,自动泊车主要分析车辆在有限的几何空间内将车辆泊到指定的空间位置。其中路径跟踪是其核心部分,根据研究方法的不同,主要分为"预瞄跟随模型"和"智能控制模型"。文章根据预瞄点的不同,主要分析单点预瞄模型、两点预瞄模型、路程预瞄模型。根据智能控制方法的不同,主要分析模糊逻辑控制驾驶员模型、神经网络控制驾驶员模型、模型预测控制驾驶员模型。  相似文献   

11.
文章主要针对无人驾驶车辆在进行路径跟踪遇到障碍物时,需要局部重新规划出一条可行路径的问题,首先基于车辆点质量模型的MPC局部路径规划算法,得到满足车辆动力学约束并实现避障功能的局部路径,然后在二自由度车辆动力学模型的基础上基于MPC进行路径的跟踪,最后使用Simulink/Carsim进行联合仿真验证,结果表明基于该局部路径规划与路径跟踪算法能够可靠地规划出避开障碍物的局部路径,实现高速下的路径跟踪。  相似文献   

12.
为提高汽车在高速、低附着系数路面下的操纵稳定性,论文设计模型预测控制器跟踪线性二自由度理想模型,得到横摆角速度与质心侧偏角偏差,然后由二次规划算法计算实际的四个车轮转角,并在Carsim软件中建立开环角阶跃工况进行联合仿真。结果表明:文章所设计的基于模型预测控制的主动四轮转向汽车相对于前轮转向,能够有效降低整车角阶跃输入下的横摆角速度与质心侧偏角,更好地跟踪理想控制目标,主动四轮转向汽车提高了整车的操纵稳定性和路径跟随精度。  相似文献   

13.
唐雨  冀杰  任玥  赵颖  黄城 《汽车技术》2021,(12):1-9
针对智能车辆的路径跟踪控制问题,基于虚拟质量-弹簧-阻尼(MSD)模型以及驾驶员预瞄理论,设计了一种路径跟踪控制方法.首先,利用脉冲响应法对虚拟MSD模型的运动响应进行求解,得到不同工况下车辆的状态响应,并获得前轮转向角的控制函数;随后,结合路径跟踪的稳定性和快速性要求,建立系统性能函数,得到虚拟MSD模型最优参数;最...  相似文献   

14.
为提高智能车在不同速度和载荷下的路径跟随精度和稳定性,提出一种基于反馈纯跟踪的智能车路径跟随方法。首先,基于车辆运动学模型和纯跟踪模型分析影响控制效果的因素;然后根据车辆速度和路径曲率动态调整前视距离,将横向偏差作为反馈变量对传统纯跟踪控制方法进行补偿;接着通过仿真试验选定控制参数,分析控制参数对路径跟随精度和车辆稳定性的影响;最后通过实车试验,验证该方法在实车环境中的控制性能。结果表明,该方法具有较高的路径跟随精度,在不同速度和载荷下保持良好的适应性和稳定性。  相似文献   

15.
为提高智能车辆路径跟踪的鲁棒性,基于模型预测控制原理提出了一种路径跟踪控制方法。该方法对车辆的3自由度非线性动力学模型进行线性化,得到线性时变模型和预测方程,并将包括控制量、控制增量等约束纳入二次规划的求解过程,同时考虑质心侧偏角、路面附着系数等影响操稳特性的约束条件。在Car Sim和MATLAB/Simulink平台上以不同车速进行了双移线工况下的联合仿真,结果显示,该控制器可较好地实现路径跟踪,并保持较好的稳定性。  相似文献   

16.
为解决高速工况下低附着系数复杂路面上转向和行驶稳定性等难以控制的问题,建立了6自由度整车动力学模型,在传统模型预测控制理论基础上,设计了前轮主动转向控制器,并通过CarSim和MATLAB/Simulink进行联合仿真,在兼顾路径跟踪精度和行驶稳定性的前提下,对控制器参数进行优化,使车辆在中低速下路径跟踪达到最佳状态,在较高车速下加入侧偏角软约束,以保证跟踪精度和行驶稳定性。试验结果表明,提出的控制方法能保证车辆在冰雪路面高速行驶时具备一定的转向精度和行驶稳定性。  相似文献   

17.
由于车辆在低附着工况(如积雪、潮湿)下跟踪性与横向稳定性的耦合关系,这使得二者之间的控制难以同时满足跟踪精度及良好的稳定性需求,因此,研究了基于分布式独立驱动电动汽车平台的路径跟踪与横向稳定性联合控制模型。对于路径跟踪问题,采用了横纵向解耦控制;对于横向跟踪控制问题,模型采用基于Frenet坐标系的模型预测控制(model predictive control,MPC)路径跟踪控制方法,并引入了转角补偿策略以提升路径跟踪的准确性;对于纵向车速控制问题,模型利用MPC求解期望加速度,并根据行驶平衡方程和保证路面附着最大利用率的条件下确定电机扭矩输出,实现对纵向车速的控制。对于横向稳定性控制问题,提出了基于稳定性增强系统(stability augmentation system,STA)的横摆力矩控制模型,在获得附加力矩后,以二次规划方法将其合理分配到各个车轮上,从而增强了车辆的横向稳定性。最后,通过CarSim/Simulink联合仿真平台,在双移线道路工况下进行了仿真验证。结果表明:在积雪路面,改进模型相比传统MPC在保证横向误差接近的条件下,最大的质心侧偏角降低了83.1%;在潮湿...  相似文献   

18.
针对自主驾驶车辆的转向避撞问题,提出了一种分层避撞控制方法。上层路径规划控制器基于车辆运动学模型,引入人工势场函数,采用障碍物与车辆的相对状态描述车辆碰撞风险。基于模型预测控制理论,构建优化目标函数,规划最优避撞路线,并采用五次多项式拟合局部避撞路径。对于下层路径跟踪控制器,则建立车辆非线性动力学模型,构建基于最优转向盘转角输入的路径跟踪优化函数,实现局部避撞路径跟踪。最后搭建了Carsim/Matlab联合仿真平台,对被控车辆在不同路面、不同车速情况下的避障路径规划和跟踪效果进行了仿真。结果表明:上层控制器能根据障碍物信息实时规划局部避撞路径,下层控制器能控制车辆平滑、稳定地跟踪参考路径,从而实现车辆的主动避撞功能。  相似文献   

19.
为提高智能车的路径跟随精度和行驶平稳性,提出一种基于改进纯跟踪的路径跟随方法。首先建立纯跟踪路径跟随模型,分析纯跟踪模型在初始偏差条件下的控制效果;然后将航向偏差作为反馈变量对纯跟踪方法进行补偿,并以横向偏差和航向偏差为输入、以补偿权重为输出,采用类模糊方法实现补偿权重的动态调节;最后通过实车试验选定控制参数,并验证所提方法的控制性能。结果表明,该方法在不同初始偏差和不同目标行驶速度下能够实现偏差的快速消除,并保证行驶平稳性,具有较好的路径跟随效果,运算耗时较少。  相似文献   

20.
为了解决园区等场景下无人车多途经点配送问题,提出了一种基于矢量化高精地图的车道级全局路径规划、生成和跟踪控制方法。考虑配送车往返途经点顺序对行驶路径总长度的影响,基于高精地图采用A*算法计算各配送点间的最优路径,在此基础上,利用动态规划算法求解经过多个配送点的全局最优路径。应用贝塞尔曲线对规划的路径进行平滑,并根据道路曲率设定不同路径处的参考行驶速度,进而生成车道级的可用于跟踪的目标轨迹。利用车辆二自由度模型设计模型预测控制器进行轨迹跟踪,实现低速物流配送车的自主控制。在 CarSim/Prescan/Simulink联合仿真平台和实车平台上对提出的规划控制方法进行了试验。结果表明,相比传统的依据最近配送点策略确定的路径,所提出的方法搜索出的路径长度平均缩短了 6.15%。所设计的轨迹跟踪控制器能确保配送试验车与目标轨迹的横向偏差在 0.25 m 以内,航向角偏差在5°以内。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号