首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
纯电动汽车动力电池容量有限,这是困扰其大力推广关键因素之一,若一味提升电池容量将大大提高整车成本。因此,在纯电动汽车动力电池容量不变和保证车辆行驶舒适安全前提下,提出续航里程提升策略至关重要。文章提出通过搭载风力发电机和制动回馈电机发电策略有助于续航,分析风力发电与制动能量回馈影响因素并研究纯电动汽车风力发电与制动能量回馈系统控制模型结构后,充分考虑汽车所受阻力,电能转换效率提升方法,建立智能发电能量模型。最后采用遗传算法将空气湿度,制动强度,电池荷电状态,行车速度等因素作为决策变量,并在Matlab软件中仿真,得出了随着风力发电机与制动回馈电机平稳运转后,风力发电与制动能量回馈之和处于最佳发电值,验证了发电策略可提升动力电池的充电量,增大纯电动汽车的续航里程。  相似文献   

2.
正一、原理制动能量回收是混合动力汽车与纯电动汽车重要技术之一,也是它们的重要特点。当内燃机汽车在减速、制动时,车辆的运动能量通过制动系统转变为热能,并向大气中释放。而在混合动力汽车与纯电动汽车上,这种被浪费掉的运动能量可通过制动能量回收技术转变为电能并储存于车辆蓄电池中,并进一步转化为驱动能量。例如,当车辆起步或加速时,需要增大驱动力时,电机驱动力成为发动机的辅助动力,使电能获得有效应用。  相似文献   

3.
本文以纯电动汽车为研究对象,阐述了再生制动系统的基本原理。对其再生制动系统结合目前的研究现状,分析其制动工况及影响其能量回收最大化的因素;基于其主要的影响因素,对几种常见的能量回收最大化的再生制动控制策略进行阐述和分析;通过比较分析,得出恒定电流制动控制策略能更好地满足电动汽车能量回收最大化的控制的结论。  相似文献   

4.
为了提高电动汽车制动能量的回收效率,增加汽车续驶里程,本文针对前、后轮制动力和再生制动力的分配策略进行了研究。结果表明,在制定前、后轮制动力分配策略时,采用以路面特征值识别为前提,将f线、ECE法规线和I曲线相结合的方法,根据当前路面的附着系数选择不同的控制策略,可使汽车在获得较大制动力的同时确保制动的方向稳定性;在制定再生制动力分配策略时,根据车辆实时工况,采用模糊控制的方法分配驱动轮上的再生制动力,可提高制动能量的回收效率。建立了再生制动控制策略的仿真模型,并在CYC_1015和CYC_UDDS两种工况下进行模拟仿真,仿真结果表明,本文提出的控制策略比ADVISOR原车控制策略能更好地实现制动能量回收,提高了纯电动汽车的续驶里程。  相似文献   

5.
郑培森 《时代汽车》2022,(3):113-115
现阶段,我国对于低碳经济的重视程度不断增加,在环境污染治理方面的投入不断增加,节约能源环境友好纯电动汽车获得进一步发展.为了进一步提高节能效果,应该充分重视能量回收系统研究工作.对此本文介绍了纯电动汽车制动能量回收管理策略,分了结合Advi SOR软件进行汽车制动系统建模,希望能够为单位与人员提供参考.  相似文献   

6.
通过对纯电动汽车制动能量回收系统的策略控制设计,实现整车能量利用率,从而进一步提升整车经济性,提升顾客满意度。  相似文献   

7.
回收制动能量是提高纯电动汽车整车能量利用效率的有效方法。文章首先介绍了纯电动汽车制动能量的分配原理及评价方法,并提出了采用定减速度试验方法对综合试验方法进行补充。在此基础上,搭建了试验平台,并设计了试验平台和车辆的参数、要求以及测试方法的重复性评价标准,最后通过某EV车型进行了试验。试验结果表明:定减速度方法可以得到更为准确的制动能量回收量,对纯电动汽车制定运行控制策略以提高整车能量利用率具有更好的指导作用。  相似文献   

8.
随着汽车工业的快速发展和人民生活质量的不断提高,汽车保有量持续增涨。有关研究表明,在存在较频繁的制动与起动的城市工况运行条件下,有效地回收制动能量,可使电动汽车行驶距离延长10%-30%。目前,随着电动汽车逐渐进人市场,如何高效率地回收和利用再生能量成为电动汽车技术研究的主要问题,本文对电动汽车制动过程进行受力分析和如何进行再生制动能量回收进行了探讨和研究.  相似文献   

9.
电动汽车制动能量回收系统研究   总被引:1,自引:0,他引:1  
为进一步提高电动汽车的能量利用率以提高其续驶里程,本文对电动汽车制动能量回收系统作了进一步研究。本文论述了电动汽车能量回收系统的原理并与传统制动系统进行比较,同时分析了机械制动与电机制动的分配关系并总结了复合制动与传统摩擦制动系统的区别,最后论述了电动汽车制动能量回收的约束因素。  相似文献   

10.
电动汽车能够有效利用可再生能源,具有清洁无污染特点,但受制于动力电池技术影响,存在续驶里程有限等缺陷。为保证纯电动汽车制动安全,提高制动能量回收利用率,对纯电动汽车机电复合制动系统组成及控制原理、模糊控制电机制动力分配、前后轴制动力分配的动力分配方式等方面进行讨论,并提出纯电动汽车机电复合制动能量回收控制措施。  相似文献   

11.
电动汽车是新能源汽车的重要发展方向。近年来,纯电动汽车、燃料电池汽车、混合动力汽车都在快速并行发展,且电驱成为主要的驱动方式。节能是新能源汽车技术发展的重点之一,怎样有效地控制提升能量的使用效率,增加整车的续驶里程是整车电驱化控制技术的重要环节,因此制动能量回馈控制成为现阶段的重要手段。本文介绍电动汽车整车制动能量回收控制系统架构及具体的控制方法。  相似文献   

12.
建立纯电动汽车制动能量回收效率的数学模型,通过3种试验方法对能量回收效率进行分析,最后得出提高车辆制动能量回收效率的有效方法。  相似文献   

13.
电动汽车的再生制动控制策略研究及仿真   总被引:1,自引:0,他引:1  
分析了汽车在典型循环工况下制动时前后轴上的制动力和制动能量的分配规律,以此为依据,介绍了电动汽车的三种制动控制策略,并着重分析了结构和控制都比较简单且容易实现的并行制动控制策略。通过对实例汽车的仿真分析,得知并行控制策略能回收制动能量的55%左右,目前来说在电动汽车上应用该策略较为理想。  相似文献   

14.
宝马BMWi电动汽车制动系统是在普通液压制动系统的基础上,增设了电子真空制动助力系统,制动时实现制动能量回收,同时满足制动时对汽车舒适性的要求。文章还介绍了该电动汽车制动系统的主要部件和电子驻车制动器。  相似文献   

15.
分析了汽车在典型循环工况下制动时前后轴上的制动力和制动能量的分配规律,以此为依据,介绍了电动汽车的三种制动控制策略,并着重分析了结构和控制都比较简单且容易实现的并行制动控制策略。通过对实例汽车的仿真分析,得知并行控制策略能回收制动能量的55%左右,目前来说在电动汽车上应用该策略较为理想。  相似文献   

16.
为提高纯电动汽车再生制动过程中的能量回收率,文章以某一前、后双电机驱动的纯电动汽车为对象,针对纯电动汽车再生制动过程中机械制动力与电机制动力的分配进行研究,合理的分配前、后轴上机械制动力与电机制动力各自的比例,并引入相关影响因子对电机制动力进行修正,制定了经济性控制策略,最后用Simulink和Cruise软件进行联合仿真。结果表明,采用经济性控制策略能够提高制动能量回收率,且在车速波动更为频繁的城市工况下更有利于电动汽车回收制动能量。  相似文献   

17.
电动汽车驱动系统再生制动特性分析与仿真   总被引:2,自引:0,他引:2  
电动汽车行驶时对能量的需求以及延长续驶里程要求驱动电机具有再生制动能力,既可以提供制动力,又可以将制动过程中的能量回收。通过对汽车制动模式及其产生的能量进行分析。以永磁无刷直流电机系统在作电动汽车动力时实现电气制动为控制策略,仿真了回馈制动,并对仿真结果进行了分析、探讨。结果表明,再生制动的算法是可行的,能满足能量回收要求。  相似文献   

18.
电动汽车制动能量回收系统评价方法研究   总被引:2,自引:0,他引:2  
以电动汽车制动能量回收过程中不同能量间的传递关系为研究对象,提出了评价制动能量回收系统的测试方法和评价指标,搭建了电动汽车制动能量回收系统测试平台,并利用该平台对某电动汽车在NEDC工况下的制动能量回收效率进行了研究。试验结果表明,制动回收能量和回收率主要受制动能量回收控制策略、制动初速度和减速度的影响,当制动初速度低于控制策略中设定车速时系统将不进行能量回收;鉴于NEOC工况中制动初速度和减速度比较单一的情况,建议开发一种适用于电动汽车制动能量回收系统评价的工况。  相似文献   

19.
纯电动汽车的控制系统任务多,如前进、倒车、制动、制动能量回收等,而且因汽车的安全性直接关系到乘坐人员的生命安全,所以对实时性和稳定性要求非常高。根据纯电动汽车控制系统的特点和DSP2407内部的丰富资源,如AD模块、CAN总线、看门狗等和实时操作系统UC/OS-Ⅱ出色的稳定性,本文开发出基于DSP2407和实时操作系统UC/OS-Ⅱ的纯电动汽车多任务控制系统。  相似文献   

20.
分析电动汽车制动能量回收的制约因素,综合汽车制动动力前、后轮制动力分配,电机制动与机械制动并行控制和电池耐受性分析,提出了制动能量回收的联合控制策略.基于Simulink和Cruise软件平台进行了系统建模和联合仿真.结果表明该联合控制策略能够实现法规制动条件下的制动能量回收,回收率达13.7%,提高续驶里程16.4%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号