首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The present study intended to (1) investigate the injury risk of pedestrian casualties involved in traffic crashes at signalized intersections in Hong Kong; (2) determine the effect of pedestrian volumes on the severity levels of pedestrian injuries; and (3) explore the role of spatial correlation in econometric crash‐severity models. The data from 1889 pedestrian‐related crashes at 318 signalized intersections between 2008 and 2012 were elaborately collected from the Traffic Accident Database System maintained by the Hong Kong Transport Department. To account for the cross‐intersection heterogeneity, a Bayesian hierarchical logit model with uncorrelated and spatially correlated random effects was developed. An intrinsic conditional autoregressive prior was specified for the spatial correlation term. Results revealed that (1) signalized intersections with greater pedestrian volumes generally exhibited a lower injury risk; (2) ignoring the spatial correlation potentially results in reduced model goodness‐of‐fit, an underestimation of variability and standard error of parameter estimates, as well as inconsistent, biased, and erroneous inference; (3) special attention should be paid to the following factors, which led to a significantly higher probability of pedestrians being killed or sustaining severe injury: pedestrian age greater than 65 years, casualties with head injuries, crashes that occurred on footpaths that were not obstructed/overcrowded, heedless or inattentive crossing, crashes on the two‐way carriageway, and those that occurred near tram or light‐rail transit stops. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
In traffic-crowded metropolitan areas, such as Shanghai and Beijing in China, right-turn vehicles that operate with a permitted phase at signalized intersections are normally permitted to filter through large numbers of pedestrians and bicycles. To alleviate such conflicts and improve safety, traffic engineers in Shanghai introduced a prohibited–permitted right-turn operation, adding a subphase to the permitted phase in which right-turns are prohibited. Unfortunately, the prohibited subphase would reduce the capacity of right-turn movements when it prohibits right turns even if there are few pedestrians and bicycles crossing the street. This paper aims at quantifying the impact of both non-vehicular flows and the prohibited subphase on the right-turn capacity, and then proposes a strategy to determine appropriate prohibited–permitted right-turn operation that minimizes the capacity reduction caused by the prohibited subphase. To achieve this goal, we improved the pedestrian and bicycle adjustment factor described in the Highway Capacity Manual by taking into account: (1) the variety in space competition between pedestrians and bicycles, and (2) the effect of two conflict zones in each phase on right-turn operation. In addition, we revised the capacity estimation model in the Highway Capacity Manual, and developed a model based on bicycle/pedestrian volume fluctuation to describe the capacity reduction due to both non-vehicular flows and the prohibited subphase. Furthermore, we proposed a timing strategy for the onset and duration of appropriate prohibited subphase. When bicycle and pedestrian volumes are low, the actuated strategy turns to the permitted phase. When these volumes are moderate, the strategy turns to the prohibited–permitted operation. With the volumes increasing, the prohibited subphase onset advances and duration increases. In these two scenarios, the new strategy has higher right-turn capacity than the current pretimed prohibited–permitted operation. Unfortunately, when bicycle and pedestrian volumes are high, the strategy yields similar right-turn capacity. However, the new prohibited subphase has less potential vehicle–bicycle and vehicle–pedestrian conflicts.  相似文献   

3.
This study examines the impact of weather on pedestrian activity, as well as the temporal trends of pedestrian flows in the city of Montreal, Canada. The direct and lagged effects of weather variables on hourly volumes are determined for the temperate and cold months, as well as for weekdays and weekends. Pedestrian hourly volumes are found to decrease in the winter. In downtown locations, there are three weekday pedestrian hourly peaks; a pattern distinctive from those observed in other surveys. Also, temperature, humidity, wind speed as well as direct and lagged effects of precipitation are the main factors affecting pedestrian activity. In winter, pedestrian flows are more sensitive to wind speeds and precipitation, and also during weekends than weekdays. Built environment plays a role not only in the magnitude but also in the temporal profile of pedestrian sidewalk activity. In comparison to bicycle ridership, pedestrian flows seem to be much less sensitive to weather.  相似文献   

4.
5.
6.
This study proposes a microscopic pedestrian simulation model for evaluating pedestrian flow. Recently, several pedestrian models have been proposed to evaluate pedestrian flow in crowded situations for the purpose of designing facilities. However, current pedestrian simulation models do not explain the negotiation process of collision avoidance between pedestrians, which can be important for representing pedestrian behaviour in congested situations. This study builds a microscopic model of pedestrian behaviour using a two-player game and assuming that pedestrians anticipate movements of other pedestrians so as to avoid colliding with them. A macroscopic tactical model is also proposed to determine a macroscopic path to a given destination. The results of the simulation model are compared with experimental data and observed data in a railway station. Several characteristics of pedestrian flows such as traffic volume and travel time in multidirectional flows, temporal–spatial collision avoidance behaviour and density distribution in the railway station are reproduced in the simulation.  相似文献   

7.
Simulating pedestrian movements at signalized crosswalks in Hong Kong   总被引:2,自引:0,他引:2  
This paper presents a new pedestrian simulation (PS) model for signalized crosswalks in Hong Kong. This PS model is capable of estimating the variations of walking speed particularly on the effects of bi-directional pedestrian flows so as to determine the minimum required duration of pedestrian crossing time. Video records taken from the observational surveys at the selected crosswalk in urban area were used to extract the required data for model calibration. It was found that the design walking speed for signalized crosswalks should be varied by the effects of the bi-directional pedestrian flows. It was also interesting to note that the negative impact of the bi-directional flow effects (ranging from uni-directional to bi-directional pedestrian flows) on the chance of pedestrian crossing the crosswalk is increasing from free-flow to at-capacity flow conditions. The new PS model is also validated using an independent data set so as to examine the reliability of the simulation results. The validation results show that the new PS model can provide an accurate evaluation on the changes of walking speed and its standard deviation under different scenarios with particular emphasis on the effects of the bi-directional pedestrian flows. The advancement of this PS model can be applied to assess the effects of each improvement measure and to evaluate the benefits of each scenario in practice.  相似文献   

8.
This paper presents a multi‐objective optimization model and its solution algorithm for optimization of pedestrian phase patterns, including the exclusive pedestrian phase (EPP) and the conventional two‐way crossing (TWC) at an intersection. The proposed model will determine the optimal pedestrian phase pattern and the corresponding signal timings at an intersection to best accommodate both vehicular traffic and pedestrian movements. The proposed model is unique with respect to the following three critical features: (1) proposing an unbiased performance index for comparison of EPP and TWC by explicitly modeling the pedestrian delay under the control of TWC and EPP; (2) developing a multi‐objective model to maximize the utilization of the available green time by vehicular traffic and pedestrian under both EPP or TWC; and (3) designing a genetic algorithm based heuristic algorithm to solve the model. Case study and sensitivity analysis results have shown the promising property of the proposed model to assist traffic practitioners, researchers, and authorities in properly selecting pedestrian phase patterns at signalized intersections. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
10.
The big paradigm for cities nowadays is to study the movement of pedestrians at the interface between metro and bus systems – metrobus interchanges. When these interchanges are not well designed, walking is inefficient and can be unsafe for pedestrians. This paper analyses, by means of a pedestrian microsimulation model, metrobus interchange spaces in order to propose planning guidelines for the city of Santiago de Chile. Specific objectives are (1) to identify the variables that provide efficiency and safety in those spaces; (2) to simulate different scenarios using the pedestrian simulation model LEGION; (3) to propose planning and design guidelines for pedestrian spaces at metrobus interchanges; and (4) to contrast the recommendations in the recently opened terminal station on Line 1 of Metro de Santiago: Los Dominicos Station.  相似文献   

11.
This paper proposes a pedestrian delay model suitable for signalized intersections in developing cities, on the basis of a field study conducted in Xi’an, China. The field study consisted of two parts: Part I involved only one crosswalk, and the signal cycle was divided into 13 subphases; Part II involved 13 crosswalks, but the signal cycles were only divided into green phases and non-green phases. It was found that pedestrian arrival rates were not uniform throughout cycles; pedestrians arriving during green phases might also receive delays; pedestrian signal non-compliance was so severe that delays were greatly reduced, but non-complying pedestrians might still receive delays; and for pedestrians walking different directions, though the relationships between average delay and arrival subphase were different, the overall average delays were almost the same. On the basis of the field study results, some assumptions are made about the relationship between average pedestrian delay and arrival subphase, and a new model is developed to estimate pedestrian delays at signalized intersections. The model is validated using the field data, and the validation results indicate that in Xi’an the new model provides much more accurate estimation than the existing models.  相似文献   

12.
The system considered is a cinema ticketing booth system. A general simulation algorithm is presented as well as the system’s operating characteristics. The results of the experiment were verified by comparing them with video observation data and theoretical values. Finally, with comparative analysis of experiment data, the developed simulation model was able to replicate the situation in which pedestrians find an available booth to occupy while waiting in a queue. The model can facilitate the availability of various pedestrian flows and a range of operating times. With some efforts of computer programming, the situations where multiple booths are available were simulated to identify pedestrian movement. The developed simulation model captures important details, such as travel time, wait time, queue length and the number of waiting pedestrians with the different number of pedestrian flows and booths. The paper presents a means to designing the pedestrian operation and plan on the basis of the estimated number of people.  相似文献   

13.
For the purposes of both traffic-light control and the design of roadway layouts, it is important to understand pedestrian street-crossing behavior because it is not only crucial for improving pedestrian safety but also helps to optimize vehicle flow. This paper explores the mechanism of pedestrian street crossings during the red-man phase of traffic light signals and proposes a model for pedestrians’ waiting times at signalized intersections. We start from a simplified scenario for a particular pedestrian under specific traffic conditions. Then we take into account the interaction between vehicles and pedestrians via statistical unconditioning. We show that this in general leads to a U-shaped distribution of the pedestrians’ intended waiting time. This U-shaped distribution characterizes the nature of pedestrian street-crossing behavior, showing that in general there are a large proportion of pedestrians who cross the street immediately after arriving at the crossing point, and a large proportion of pedestrians who are willing to wait for the entire red-man phase. The U-shaped distribution is shown to reduce to a J-shaped or L-shaped distribution for certain traffic scenarios. The proposed statistical model was applied to analyze real field data.  相似文献   

14.
A macroscopic loading model applicable to time-dependent and congested pedestrian flows in public walking areas is proposed. Building on the continuum theory of pedestrian flows and the cell transmission model for car traffic, an isotropic framework is developed that can describe the simultaneous and potentially conflicting propagation of multiple pedestrian groups. The model is formulated at the aggregate level and thus computationally cheap, which is advantageous for studying large-scale problems. A detailed analysis of several basic flow patterns including counter- and cross flows, as well as two generic scenarios involving a corner- and a bottleneck flow is carried out. Various behavioral patterns ranging from disciplined queueing to impatient jostling can be realistically reproduced. Following a systematic model calibration, two case studies involving a Swiss railway station and a Dutch bottleneck flow experiment are presented. A comparison with the social force model and pedestrian tracking data shows a good performance of the proposed model with respect to predictions of travel time and density.  相似文献   

15.
Most research on walking behavior has focused on mode choice or walk trip frequency. In contrast, this study is one of the first to analyze and model the destination choice behaviors of pedestrians within an entire region. Using about 4500 walk trips from a 2011 household travel survey in the Portland, Oregon, region, we estimated multinomial logit pedestrian destination choice models for six trip purposes. Independent variables included terms for impedance (walk trip distance), size (employment by type, households), supportive pedestrian environments (parks, a pedestrian index of the environment variable called PIE), barriers to walking (terrain, industrial-type employment), and traveler characteristics. Unique to this study was the use of small-scale destination zone alternatives. Distance was a significant deterrent to pedestrian destination choice, and people in carless or childless households were less sensitive to distance for some purposes. Employment (especially retail) was a strong attractor: doubling the number of jobs nearly doubled the odds of choosing a destination for home-based shopping walk trips. More attractive pedestrian environments were also positively associated with pedestrian destination choice after controlling for other factors. These results shed light on determinants of pedestrian destination choice behaviors, and sensitivities in the models highlight potential policy-levers to increase walking activity. In addition, the destination choice models can be applied in practice within existing regional travel demand models or as pedestrian planning tools to evaluate land use and transportation policy and investment scenarios.  相似文献   

16.
We present a method of predicting pedestrian route choice behavior and physical congestion during the evacuation of indoor areas with internal obstacles. Under the proposed method, a network is first constructed by discretizing the space into regular hexagonal cells and giving these cells potentials before a modified cell transmission model is employed to predict the evolution of pedestrian flow in the network over time and space. Several properties of this cell transmission model are explored. The method can be used to predict the evolution of pedestrian flow over time and space in indoor areas with internal obstacles and to investigate the collection, spillback, and dissipation behavior of pedestrians passing through a bottleneck. The cell transmission model is further extended to imitate the movements of multiple flows of pedestrians with different destinations. An algorithm based on generalized cell potential is also developed to assign the pedestrian flow.  相似文献   

17.
Local density, which is an indicator for comfortable moving of a pedestrian, is rarely considered in traditional force based and heuristics based pedestrian flow models. However, comfortable moving is surely a demand of pedestrian in normal situations. Recently, Voronoi diagram had been successfully adopted to obtain the local density of a pedestrian in empirical studies. In this paper, Voronoi diagram is introduced into the heuristics based pedestrian flow model. It provides not only local density but also other information for determining moving velocity and direction. Those information include personal space, safe distance, neighbors, and three elementary characteristics directions. Several typical scenarios are set up to verify the proposed model. The simulation results show that the velocity-density relations and capacities of bottleneck are consistent with the empirical data, and many self-organization phenomena, i.e., arching phenomenon and lane formation, are also reproduced. The pedestrians are likely to be homogeneously distributed when they are sensitive to local density, otherwise pedestrians are non-uniformly distributed and the stop-and-go waves are likely to be reproduced. Such results indicate that the Voronoi diagram is a promising tool in modeling pedestrian dynamics.  相似文献   

18.
In India pedestrians usually cross the road at mid-block crosswalks due to ease of access to their destination or the development of adjacent land use types such as shopping, business areas, school and residential areas. The behaviour of pedestrian will change with respect to different land use type and this change in behaviour of pedestrian further reflects change in perceived level of service (LOS). So, it is important to evaluate the quality of service of such crossing facilities with respect to different land-use type under mixed traffic conditions. In this framework, pedestrian perceived LOS were collected with respect to different land-use type such as shopping, residential and business areas. The ordered probit (OP) model was developed by using NLOGIT software package, with number of vehicles encountered, road crossing difficulty as well as safety considered as primary factors along with pedestrian individual factors (gender and age), land-use type and roadway geometry. From the model results, it has been concluded that perceived safety, crossing difficulty, land-use condition, number of vehicles encountered, median width and number of lanes have significant effect on pedestrian perceived LOS at unprotected (un-signalized) mid-block crosswalks in mixed traffic scenario. The inferences of these results highlights the importance of land use planning in designing a new set of pedestrian access facilities for unprotected mid-block crosswalks under mixed traffic conditions. Also the study results would be useful for evaluating pedestrian accessibility taking into account different land-use type and planning required degree of segregation with vehicular movement at unprotected mid-block crosswalk locations.  相似文献   

19.
Limited pedestrian behavior models shed light on the case at signalized crosswalk, where pedestrian behavior is characterized by group or individual evasion with surrounding pedestrians, collision avoidance with conflicting vehicles, and response to signal control and crosswalk boundary. This study fills this gap by developing a microscopic simulation model for pedestrian behavior analysis at signalized intersection. The social force theory has been employed and adjusted for this purpose. The parameters, including measurable and non-measurable ones, are either directly estimated based on observed dataset or indirectly derived by maximum likelihood estimation. Last, the model performance was confirmed in light of individual trajectory comparison between estimation and observation, passing position distribution at several cross-sections, collision avoidance behavior with conflicting vehicles, and lane-formation phenomenon. The simulation results also concluded that the model enables to visually represent pedestrian crossing behavior as in the real world.  相似文献   

20.
The value of a pedestrian stream simulation depends on its ability to reproduce natural behaviour of pedestrians in different situations. Most models assume that pedestrians are single-minded and constantly move towards their destinations. However, our observations at two major German railway stations made during field experiments and our analysis of video recordings at one of these stations revealed that in virtually every setting a significant proportion of pedestrians do not walk continuously. Instead, they occasionally change their route in order to visit certain locations and stand there for a period of time. By waiting, they often block walking pedestrians and thereby influence the overall dynamics.In this paper, we evaluate the impact of waiting pedestrians and propose a model for waiting pedestrians based on cellular automata. The model is able to reproduce the observed pedestrian behaviour. We illustrate the model with simulations of several real life scenarios for a major German railway station and show that during rush hour standing pedestrians may prolong walking time by up to nearly 20%. We also demonstrate how the developed model can be used for the analysis of infrastructures, and prediction of problematic areas in public spaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号