首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Travel demand analyses are useful for transportation planning and policy development in a study area. However, travel demand modeling faces two obstacles. First, standard practice solves the four travel components (trip generation, trip distribution, modal split and network assignment) in a sequential manner. This can result in inconsistencies and non-convergence. Second, the data required are often complex and difficult to manage. Recent advances in formal methods for network equilibrium-based travel demand modeling and computational platforms for spatial data handling can overcome these obstacles. In this paper we report on the development of a prototype geographic information system (GIS) design to support network equilibrium-based travel demand models. The GIS design has several key features, including: (i) realistic representation of the multimodal transportation network, (ii) increased likelihood of database integrity after updates, (iii) effective user interfaces, and (iv) efficient implementation of network equilibrium solution algorithms.  相似文献   

2.
Abstract

Many urban university campuses are considered major trip attractors. Considering the multimodal and complex nature of university campus transportation planning and operation, this paper proposes a dynamic traffic simulation and assignment analysis approach and demonstrates how such a methodology can be successfully applied. Central to the research is the estimation of trip origindestinations and the calibration of a parking lot choice model. Dynamic simulation is utilized to simulate multiple modes of transportation within the transportation network while further assigning these modes with respect to various mode-specific roadway accessibilities. A multiple vehicle-class simulation analysis for planning purposes becomes a critical capability to predict how faculty and staff who once parked within the campus core choose other nearby alternate parking lots. The results highlight the effectiveness of the proposed approach in providing integrated and reliable solutions for challenging questions that face urban university campus planners and local transportation jurisdictions.  相似文献   

3.
The benefit, in terms of social surplus, from introducing congestion charging schemes in urban networks is depending on the design of the charging scheme. The literature on optimal design of congestion pricing schemes is to a large extent based on static traffic assignment, which is known for its deficiency in correctly predict travel times in networks with severe congestion. Dynamic traffic assignment can better predict travel times in a road network, but are more computational expensive. Thus, previously developed methods for the static case cannot be applied straightforward. Surrogate‐based optimization is commonly used for optimization problems with expensive‐to‐evaluate objective functions. In this paper, we evaluate the performance of a surrogate‐based optimization method, when the number of pricing schemes, which we can afford to evaluate (because of the computational time), are limited to between 20 and 40. A static traffic assignment model of Stockholm is used for evaluating a large number of different configurations of the surrogate‐based optimization method. Final evaluation is performed with the dynamic traffic assignment tool VisumDUE, coupled with the demand model Regent, for a Stockholm network including 1240 demand zones and 17 000 links. Our results show that the surrogate‐based optimization method can indeed be used for designing a congestion charging scheme, which return a high social surplus. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
Intelligent transportation systems (ITS) have been used to alleviate congestion problems arising due to demand during peak periods. The success of ITS strategies relies heavily on two factors: 1) the ability to accurately estimate the temporal and spatial distribution of travel demand on the transportation network during peak periods, and, 2) providing real‐time route guidance to users. This paper addresses the first factor. A model to estimate time dependent origin‐destination (O‐D) trip tables in urban areas during peak periods is proposed. The daily peak travel period is divided into several time slices to facilitate simulation and modeling. In urban areas, a majority of the trips during peak periods are work trips. For illustration purposes, only peak period work trips are considered in this paper. The proposed methodology is based on the arrival pattern of trips at a traffic analysis zone (TAZ) and the distribution of their travel times. The travel time matrix for the peak period, the O‐D trip table for the peak period, and the number of trips expected to arrive at each TAZ at different work start times are inputs to the model. The model outputs are O‐D trip tables for each time slice in the peak period. 1995 data for the Las Vegas metropolitan area are considered for testing and validating the model, and its application. The model is reasonably robust, but some lack of precision was observed. This is due to two possible reasons: 1) rounding‐off, and, 2) low ratio of total number of trips to total number of O‐D pair combinations. Hence, an attempt is made to study the effect of increasing this ratio on error estimates. The ratio is increased by multiplying each O‐D pair trip element with a scaling factor. Better estimates were obtained. Computational issues involved with the simulation and modeling process are discussed.  相似文献   

5.
6.
7.
This paper introduces a model of urban freight demand that seeks to estimate tour flows from secondary data sources e.g., traffic counts, to bypass the need for expensive surveys. The model discussed in this paper, referred as Freight Tour Synthesis (FTS), enhances current techniques by incorporating the time-dependent tour-based behavior of freight vehicles, and the decision maker’s (e.g., metropolitan planning agency planner) preferences for different sources of information. The model, based on entropy maximization theory, estimates the most likely set of tour flows, given a set of freight trip generation estimates, a set of traffic counts per time interval, and total freight transportation cost in the network. The type of inputs used allows the assessment of changes in infrastructure, policy and land use. The ability of the model to replicate actual values is assessed using the Denver Region (CO) as a case study.  相似文献   

8.
A number of estimation procedures have been suggested for the situation where a prior estimate of an origin-destination matrix is to be updated on the basis of recently-acquired traffic counts. These procedures assume that both the link flows and the proportionate usage of each link made by each origin-destination flow (referred to collectively as the link choice proportions) are known. This paper examines the possibility and methods for estimating the link choice proportions. Three methods are presented: (1) using ad hoc iteration between trip distribution and traffic assignment; (2) combining trip distribution and assignment in one step; (3) solving a new optimization problem in which the path flows are directly considered as variables and its optimal solution is governed by a logit type formula. The algorithms, covergencies and computational efficiencies of these methods are investigated. Results of testing the three methods on example networks are discussed.  相似文献   

9.
CDAM is a new computer program for solving the combined trip distribution and assignment model for multiple user classes, which enables transport planners to estimate consistent Origin-Destination (O-D) matrices and equilibrium traffic flows simultaneously if the trip production and attraction of each user class at zone centroids are available. This paper reports an application of CDAM to the central Kowloon study area in Hong Kong. The coefficients of the model related to the components of generalized costs are calibrated on 1986 travel data. A comparison of results of CDAM and a version of MicroTRIPS models of transportation demand in Hong Kong are presented. Finally, some conclusions are drawn and the advantage of the CDAM are discussed.  相似文献   

10.
The cost of nation wide travel surveys is high. Hence in many developing countries, planners have found it difficult to develop intercity transportation plans due to the non availability of origin‐destination trip matrices. This paper will describe a method for the intercity auto travel estimation for Sri Lanka with link traffic volume data.

The paper outlines the rationale of selecting the district capitals of Sri Lanka as its “cities,” the methodology for selecting the intercity road network, determination of link travel times from express bus schedules and the location of link volume counting positions.

Initially, the total auto travel demand model is formulated with various trip purpose sub‐models. This model is finally modified to a simple demand model with district urban population and travel times between city pairs as the exogenous variables, to overcome statistical estimation difficulties. The final demand model has statistics within the acceptable regions.

The advantages of a simple model are discussed and possible extensions are proposed.  相似文献   

11.
A dynamic traffic assignment (DTA) model typically consists of a traffic performance model and a route choice model. The traffic performance model describes how traffic propagates (over time) along routes connecting origin-destination (OD) pairs, examples being the cell transmission model, the vertical queueing model and the travel time model. This is implemented in a dynamic network loading (DNL) algorithm, which uses the given route inflows to compute the link inflows (and hence link costs), which are then used to compute the route travel times (and hence route costs). A route swap process specifies the route inflows for tomorrow (at the next iteration) based on the route inflows today (at the current iteration). A dynamic user equilibrium (DUE), where each traveller on the network cannot reduce his or her cost of travel by switching to another route, can be sought by iterating between the DNL algorithm and the route swap process. The route swap process itself takes up very little computational time (although route set generation can be very computationally intensive for large networks). However, the choice of route swap process dramatically affects convergence and the speed of convergence. The paper details several route swap processes and considers whether they lead to a convergent system, assuming that the route cost vector is a monotone function of the route inflow vector.  相似文献   

12.
This paper documents the efforts to operationalize the conceptual framework of MIcrosimulation Learning-based Approach to TRansit Assignment (MILATRAS) and its component models of departure time and path choices. It presents a large-scale real-world application, namely the multi-modal transit network of Toronto which is operated by the Toronto Transit Commission (TTC). This large-scale network is represented by over 500 branches with more than 10,000 stops. About 332,000 passenger-agents are modelled to represent the demand for the TTC in the AM peak period. A learning-based departure time and path choice model was adopted using the concept of mental models for the modelling of the transit assignment problem. The choice model parameters were calibrated such that the entropy of the simulated route loads was optimized with reference to the observed route loads, and validated with individual choices. A Parallel Genetic Algorithm engine was used for the parameter calibration process. The modelled route loads, based on the calibrated parameters, greatly approximate the distribution underlying the observed loads. 75% of the exact sequence of transfer point choices were correctly predicted by the off-stop/on-stop choice mechanism. The model predictability of the exact sequence of route transfers was about 60%. In this application, transit passengers were assumed to plan their transit trip based on their experience with the transportation network; with no prior (or perfect) knowledge of service performance.  相似文献   

13.
This article formalizes the land use design problem as a discrete-convex programming problem integrating within a quadratic assignment framework a realistic representation of transportation behavior (automobile congestion and variable demand for travel) as modelled by a combined trip distribution trip assignment model. Hill-climbing algorithms are proposed to solve the resulting optimization problem. Their performance is compared and evaluated on a set of test problems.  相似文献   

14.
Regardless of existing types of transportation and traffic model and their applications, the essential input to these models is travel demand, which is usually described using origin–destination (OD) matrices. Due to the high cost and time required for the direct development of such matrices, they are sometimes estimated indirectly from traffic measurements recorded from the transportation network. Based on an assumed demand profile, OD estimation problems can be categorized into static or dynamic groups. Dynamic OD demand provides valuable information on the within-day fluctuation of traffic, which can be employed to analyse congestion dissipation. In addition, OD estimates are essential inputs to dynamic traffic assignment (DTA) models. This study presents a fuzzy approach to dynamic OD estimation problems. The problems are approached using a two-level model in which demand is estimated in the upper level and the lower level performs DTA via traffic simulation. Using fuzzy rules and the fuzzy C-Mean clustering approach, the proposed method treats uncertainty in historical OD demand and observed link counts. The approach employs expert knowledge to model fitted link counts and to set boundaries for the optimization problem by defining functions in the fuzzification process. The same operation is performed on the simulation outputs, and the entire process enables different types of optimization algorithm to be employed. The Box-complex method is utilized as an optimization algorithm in the implementation of the approach. Empirical case studies are performed on two networks to evaluate the validity and accuracy of the approach. The study results for a synthetic network and a real network demonstrate the robust performance of the proposed method even when using low-quality historical demand data.  相似文献   

15.
Many problems in transport planning and management tasks require an origindestination (O-D) matrix to represent the travel pattern. However, O-D matrices obtained through a large scale survey such as home or roadside interviews, tend to be costly, labour intensive and time disruptive to trip makers. Therefore, the use of low cost and easily available data is particularly attractive.The need of low-cost methods to estimate current and future O-D matrices is even more valuable in developing countries because of the rapid changes in population, economic activity and land use. Models of transport demand have been used for many years to synthesize O-D matrices in study areas. A typical example of this is the gravity model; its functional form, plus the appropriate values for the parameters involved, is employed to produce acceptable matrices representing trip making behaviour for many trip purposes and time periods.The work reported in this paper has combined the advantages of acceptable travel demand models with the low cost and availability of traffic counts. Three types of demand models have been used: gravity (GR), opportunity (OP) and gravity-opportunity (GO) models. Three estimation methods have been developed to calibrate these models from traffic counts, namely: non-linear-least-squares (NLLS), weighted-non-linear-least-squares (WNLLS) and maximumlikelihood (ML).The 1978 Ripon (urban vehicle movement) survey was used to test these methods. They were found to perform satisfactorily since each calibrated model reproduced the observed O-D matrix fairly closely. The tests were carried out using two assignment techniques, all-or-nothing and the stochastic method due to Burrell, in determining the routes taken through the network.requests for offprints  相似文献   

16.
Cascetta  Ennio  Russo  Francesco 《Transportation》1997,24(3):271-293
Traffic counts on network links constitute an information source on travel demand which is easy to collect, cheap and repeatable. Many models proposed in recent years deal with the use of traffic counts to estimate Origin/Destination (O/D) trip matrices under different assumptions on the type of "a-priori" information available on the demand (surveys, outdated estimates, models, etc.) and the type of network and assignment mapping (see Cascetta & Nguyen 1988). Less attention has been paid to the possibility of using traffic counts to estimate the parameters of demand models. In this case most of the proposed methods are relative to particular demand model structures (e.g. gravity-type) and the statistical analysis of estimator performance is not thoroughly carried out. In this paper a general statistical framework defining Maximum Likelihood, Non Linear Generalized Least Squares (NGLS) and Bayes estimators of aggregated demand model parameters combining counts-based information with other sources (sample or a priori estimates) is proposed first, thus extending and generalizing previous work by the authors (Cascetta & Russo 1992). Subsequently a solution algorithm of the projected-gradient type is proposed for the NGLS estimator given its convenient theoretical and computational properties. The algorithm is based on a combination of analytical/numerical derivates in order to make the estimator applicable to general demand models. Statistical performances of the proposed estimators are evaluated on a small test network through a Monte Carlo method by repeatedly sampling "starting estimates" of the (known) parameters of a generation/distribution/modal split/assignment system of models. Tests were carried out assuming different levels of "quality" of starting estimates and numbers of available counts. Finally NGLS estimator was applied to the calibration of the described model system on the network of a real medium-size Italian town using real counts with very satisfactory results in terms of both parameter values and counted flows reproduction.  相似文献   

17.
Currently most optimization methods for urban transport networks (i) are suited for networks with simplified dynamics that are far from real-sized networks or (ii) apply decentralized control, which is not appropriate for heterogeneously loaded networks or (iii) investigate good-quality solutions through micro-simulation models and scenario analysis, which make the problem intractable in real time. In principle, traffic management decisions for different sub-systems of a transport network (urban, freeway) are controlled by operational rules that are network specific and independent from one traffic authority to another. In this paper, the macroscopic traffic modeling and control of a large-scale mixed transportation network consisting of a freeway and an urban network is tackled. The urban network is partitioned into two regions, each one with a well-defined Macroscopic Fundamental Diagram (MFD), i.e. a unimodal and low-scatter relationship between region density and outflow. The freeway is regarded as one alternative commuting route which has one on-ramp and one off-ramp within each urban region. The urban and freeway flow dynamics are formulated with the tool of MFD and asymmetric cell transmission model, respectively. Perimeter controllers on the border of the urban regions operating to manipulate the perimeter interflow between the two regions, and controllers at the on-ramps for ramp metering are considered to control the flow distribution in the mixed network. The optimal traffic control problem is solved by a Model Predictive Control (MPC) approach in order to minimize total delay in the entire network. Several control policies with different levels of urban-freeway control coordination are introduced and tested to scrutinize the characteristics of the proposed controllers. Numerical results demonstrate how different levels of coordination improve the performance once compared with independent control for freeway and urban network. The approach presented in this paper can be extended to implement efficient real-world control strategies for large-scale mixed traffic networks.  相似文献   

18.
This study develops a four-step travel demand model for estimating traffic volumes for low-volume roads in Wyoming. The study utilizes urban travel behavior parameters and processes modified to reflect the rural and low-volume nature of Wyoming local roads. The methodology disaggregates readily available census block data to create transportation analysis zones adequate for estimating traffic on low-volume rural roads. After building an initial model, the predicted and actual traffic volumes are compared to develop a calibration factor for adjusting trip rates. The adjusted model is verified by comparing estimated and actual traffic volumes for 100 roads. The R-square value from fitting predicted to actual traffic volumes is determined to be 74% whereas the Percent Root Mean Square Error is found to be 50.3%. The prediction accuracy for the four-step travel demand model is found to be better than a regression model developed in a previous study.  相似文献   

19.
Abstract

In this paper a route-based dynamic deterministic user equilibrium assignment model is presented. Some features of the linear travel time model are first investigated and then a divided linear travel time model is proposed for the estimation of link travel time: it addresses the limitations of the linear travel time model. For the application of the proposed model to general transportation networks, this paper provides thorough investigations on the computational issues in dynamic traffic assignment with many-to-many OD pairs and presents an efficient solution procedure. The numerical calculations demonstrate that the proposed model and solution algorithm produce satisfactory solutions for a network of substantial size with many-to-many OD pairs. Comparisons of assignment results are also made to show the impacts of incorporation of different link travel time models on the assignment results.  相似文献   

20.
This paper presents a novel application of static traffic assignment methods, but with a variable time value, for estimating the market share of high‐speed rail (HSR) in the northwest–southeast (NW–SE) corridor of Korea currently served by air, conventional rail and highway modes. The proposed model employs a time–space network structure to capture the interrelations among competing transportation modes, and to reflect their supply‐ and demand‐side constraints as well as interactions through properly formulated link‐node structures. The embedded cost function for each network link offers the flexibility for incorporating all associated factors, such as travel time and fare, in the model computation, and enables the use of a distribution rather than a constant to represent the time–value variation among all transportation mode users. To capture the value‐of‐time (VOT) of tripmakers along the target corridor realistically, this study has developed a calibration method with aggregate demand information and key system performance data from the NW–SE corridor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号