共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
短时交通流预测是提高普通国省道交通运行效率和安全的关键技术之一。普通国省道具有分布地域广、情况复杂的特点,要求短时交通流预测方法具有良好的适应性,然而,针对短时交通流预测算法适应性及其机制的系统性研究尚不多见。选取1种自适应卡尔曼滤波算法,系统分析其适应性和适应机制。获取江苏省徐州市普通国省道路网中8个交通调查站所采集的实际交通流数据开展实例分析,结果表明:在不同的交通流量水平下,所选算法均值预测的平均绝对百分比误差在10.98%~15.92%之间,区间预测的无效覆盖率在5.21%~6.15%之间,表明所选的自适应卡尔曼滤波算法在不同交通流水平下都具有良好的预测性能;对所选算法的参数进行分析发现,算法参数能够随交通流水平的变化而自动调整,具有良好的自适应机制;所选算法能够在预测初期实现有效的性能调整和收敛。
相似文献6.
7.
8.
高速公路短时交通流预测对于高速公路智能管控具有重要意义。通过总结不同文献中关于高速公路短时交通流预测的研究内容,发现了目前高速公路短时交通流预测研究存在的不足,给出了高速公路短时交通流预测的流程,对高速公路短时交通流预测模型进行了分类比较,明确了不同模型的适用场景和优缺点,通过具体案例数据分析比较了KNN模型、SVM模型、LSTM模型的预测精度,研究发现KNN模型的预测精度最高,明确了数据质量和算法精度是交通流预测的关键。本研究可以为高速公路短时交通流预测发展提供借鉴。 相似文献
9.
短时交通流预测可为智能交通控制和管理提供决策依据,为了提高短时交通流的预测精度,统筹考虑短时交通流的混沌时间序列和非线性特征,提出一种基于相空间重构和PSO-RBF的短时交通流预测方法(PSR-PSO-RBF方法)。采用延迟嵌入定理,构造一个基于相空间重构的短时交通流时间序列;在剖析RBF神经网络不足之处的基础上,采用PSO算法,确保短时交通流预测的精确度和可靠性。实例分析结果表明,该方法可有效提高短时交通流的预测精度和可靠性,其预测误差较小。 相似文献
10.
11.
12.
13.
短时交通流预测在城市交通控制和管理中起着十分重要的作用。然而,目前很多预测模型均假定模型的参数是不随时间变化的,这与实际不符,从而影响了预测的精度。本文提出采用多层建模与灰色建模的综合方法预测短时交通流。该方法把预测问题分为两部分:一是预测模型参数的预测;二是根据参数预测值的交通流预测。其中,对模型参数运用灰色理论预测方法。实例分析表明,本方法有较好的预测精度和实用价值。 相似文献
14.
15.
16.
17.
18.
为了提高城市道路短时交通流预测的精度,提出了一种基于时空遗传粒子群支持向量机的短时交通流预测模型.通过主成分分析法对路网原始交通流量进行时空相关性分析,用较少的主成分代替原始交通流量并作为预测因子,在粒子群算法中引入遗传算法的交叉和变异因子,避免粒子群算法陷入局部最优.利用改进后的粒子群算法优化支持向量机参数,得到最优的支持向量机模型,并实现城市道路的短时交通流预测.以长春市路网的实测数据为基础进行了实例验证,结果表明,优化支持向量机参数时,遗传粒子群算法不会陷入局部最优,优化效果更好;与粒子群支持向量机模型和遗传粒子群支持向量机模型相比,所提出预测模型的相对误差波动较稳定,平均预测精度分别提高了4.96%和3.41%. 相似文献
19.
传统的交通流预测技术使用静态和离线算法,无法对模型的参数值和内部结构进行在线调整.然而,交通流变化具有明显的动态性,其内在模式会随时间发生变化,导致构建好的模型准确度下降.针对上述问题,提出了基于数据流集成回归的短时交通流预测模型.将不断产生的交通流数据划分成数据块,每个数据块训练1个基础回归模型,然后加权组合为集成模型.通过不断训练新的基础模型,并置换出集成模型中准确度最差的基础模型,实现在线更新.在实测数据上的对比实验结果表明,与静态离线的BN模型相比,模型的均方根误差降低了19.5%,运算时间降低了48.7%,并能够快速适应交通状况发生明显变化的情况,适用于城市主干道路的短时交通流预测问题. 相似文献